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NOTICE,

This report was prepared as an ac,_unt of Government sponsored

work. Neither the United States, nor the National Aeronautics

and Space Administration (NASA), nor any person acting on
behalf of NASA:

A.) Makes any warranty or representation, expressed or

implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this

report, or that the use of any information, apparatus,

method, or process disclosed in this report may not

infringe privately owned rights; or

B.) Assumes any liabilities with respect to the use of,

or for damages resulting from the use of any infor-

mation, apparatus, method or process disclosed in

this report.

As used above, "person acting on behalf of NASA" includes

any employee or contractor of NASA, or employee of such con-
tractor, to the extent that such employee or contractor of NASA,

or employee of such contractor prepares, disseminates, or

provides access to, any information pursuant to his employment
or contract with NASA, or his employment with such contractor.
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DESIGN AND OPTIMIZATION OF SPACE THERMAL PROTECTION

FOR CRYOGENS--ANALYTICAL TECHNIQUES AND RESULTS

by

J. Mo Bonneville

ABSTRACT

The results of analyses and relevant experiments dealing with

multilayer insulation, performed during the last four years, are

presented in a logical sequence. Emphasis is placed on the experi-

mental fact that in a carefully designed and applied insulation system,

the foils will act as intended, i.e., as pure radiative shields.

Several relationships useful for determining the heat flow to a cryogenic

tank are developed on that basis.

Penetrations through the insulation are discussed in detail.

Methods for ascertaining their effect, and for decoupling them from

the edges of foils, are presented, along with criteria to determine

the usefulness of decoupling in a given case.
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DESIGN AND OPTIMIZATION OF SPACE THERMAL PROTECTION

FOR CRYOGENS--ANALYTICAL TECHNIQUES AND RESULTS

by

J. M. Bonneville

Arthur D. Little, Inc.

SUMMARY

The object of this report is to assemble the significant results

of all the analytical work performed to date on the subject of multi-

layer insulation (MLI).

In the introduction, the basis for the organization of the report

is laid down in terms of (i) the role played by various insulation

schemes and (ii) the steps involved in solving the thermal problem. The

scope of the report is then made clear: to present the analytical aspects

of the work involved in choosing, designing and optimizing a thermal

protection system, with emphasis on MLI.

The environment of space is first treated, by way of an outline of

the analytical procedure required to account for that environment. Pre-

vious work on the subject is referred to. The environment external to

a tank is next discussed; this will differ from the space environment

in the case of a shrouded tank. A shroud appears to be mandatory, in

view of the requirements of ascent aerodynamic heating and space micro-

meteoroid protection; it would be most useful during groundhold also.

Section IV, which is divided into six parts, treats in detail multi-

layer insulation. Part A is a general, though quantitative, discussion

of the thermal behavior of real multilayer insulation necessary for an

understanding of MLI. Part B Justifies and discusses the treatment of

biLl as a continuous blanket over the tank. This approach is valid

because penetrations will affect the heat flow through the MLI blanket

only slightly, whereas the converse is not true (the MLI blanket affects

the heat flow through penetrations).

viii
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In Part C, the thermal effect of penetrations and discontinuities

in MLI is discussed in detail. First, concepts are developed for an

understanding of the basic effect. Following this, various types of

thermal shorts are graded according as they permit simple analysis or

not. Methods for designing shorts for minimum heat leak are introduced.

The very important matter of decoupling penetrations from the edges of

foil is treated in detail. Some cases appear where decoupling is useless,
or worse.

Parts D and E deal with analytical methods and relationships. Part

D treats of scaling laws that can be applied to the MLI blanket, and to

the penetrations. Part E summarizes the methods of computation recommended

in determining the temperature field within MLI.

Part F discusses those parts of the experimental work done at

Arthur D. Little, Inc., to investigate the validity of the analytical
approach.

A series of six appendices deal in detail with: shroud radiation;

internal pipe radiation; venting during ascent; the spreading of per-

turbations in MLI; the heat flow through a blanket of pure radiating

foils (which is independent of conduction parallel to foils); and the

general cylindrical thermal short.

ix
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NOMENCLATURE

distancethicknessbetween shields; at, thermal diffusivity, k/_ Cp;

area; general constant

thickness of insulation; general constant

velocity; c, average molecular velocity

general constant; C , heat capacity at constant pressure;

Ci, conduction heat_input into ith element, see Eq. B-5

diffusion coefficient; representative dimension

parameter Eq. IV-C-33

parameter defined in Eq. 111-4; molecular flux through

shield

parameter defined in Eq. 111-5; parameter defined in

Eq. IV-C-32

incident radiation flux

thermal conductivity; k_ , perpendicular to plane of insulation;

k_, parallel to plane of insulation; kf, foil

Boltzmann' s cons tant

product of thermal conductivity times thickness

general constant

length

le ng th

number of shields; ns, shields; np, number of penetrations

molecular density

exponent in Eq. IV-C-30

loading or pressure; _P, pressure difference

heat flow; qr' radiation heat flow
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q

r

R

S

t

T

u

w

x

X

by

Z

E

e

heat flux; Qpen' due to penetration

radius of penetration; distance

gas constant; radiosity (see Appendix A); general symbol

for resistance

stress

thickness; tf, of foil

temperature; Ta, adiabatic; Ts, surface; Tliq, liquid

dimensionless parameter relating lengths

solid angle, 2_ sin e d e; width of penetration; w, mass

flow rate

distance

perturbation decay characteristic length

B/n

distance

absorptivity; no, of surface; _ij' parameter in Eq. A-2;
_n' parameter in Eq. F-15

3
4 cT

oa

parameter in Eq. IV-D-2

gap width

emissivity; ¢o' of surface

Z/D

angle; T/Ta,ma x, time

parameter in Eq. D-12

c/2nc
o

parameter proportional to conductivity of penetration

parameter in Eq. B-9

molecular flux from walls
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6

X/D

density

Stefan-Boltzmann constant

characteristic time for heat conduction; perforated fraction

in insulation

temperature parameter in Eq. IV-C-6

parameter defined in Eq. F-15
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I. INTRODUCTION

By definition, the temperature of a cryogenic substance at normal
O

pressure is below i00 K. On the other hand, the temperature of a body

in equilibrium with the thermal radiation environment of the inner

solar system (the adiabatic, or equilibrium temperature) can reach

several hundred degrees Kelvin, the actual value depending on the geo-

metry of the body, its distance from the sun, and its absorbtance and

emittance. At the latter temperatures, a cryogen either would experience

a high pressure rise, requiring containing walls of excessive mass,

or a large fraction would boil off, requiring an excessive initial

amount for a desired useful amount. It follows that the space storage

of cryogenic propellants in the inner solar system presents a thermal

problem; this problem must be solved in order to reduce dead mass in

space vehicles.

A number of methods (thermal protection schemes) are available for

dealing with this problem. Each of these methods involves additional

mass, so that in considering their application, attention must be paid

to the effect this mass has on the payload ratio. Unless this effect

is small, an optimization procedure is required, both in the choice of

method and in the choice of parameters associated with the method

chosen. It must be remembered also that any thermal protection scheme

must be consistent with the physical requirements of groundhold, earth

ascent and micrometeoroid protection in space, as well as those of over-

all system performance, since any scheme that is not so consistent

cannot be accepted, regardless of its merits as regards thermal pro-

tection in space. Also, simplicity of operation, leading to reliability,

and consonance with other systems aspects (e.g., life, structural,

propulsion, guidance, communication) are required of any scheme°

A. Role Played by Various Thermal Protection Schemes

The role played by the various schemes can be illustrated by con-

sidering three cases: two extremes and the intermediate case. At one

extreme, one can consider the case of a large amount of propellant to

be stored for a relatively short period. The thermal problem might

then conceivably be so slight as to be solved by mere containment in

bare tanks, with boil-off losses made up during groundhold and boil-off

and/or pressure rise acceptable during boost-out and space flight.

At the other extreme, relatively small amounts of cryogenic pro-

pellants are to be stored in space for very long periods in orbits

that pass close to the sun. In such cases only the most minute net heat

input rates to the propellant can be tolerated. One scheme to solve

this problem would be to combine shadow-shields, radiators and attitude

control to maintain the adiabatic temperature of the propellant tank

at, or not far above, the normal boiling point of the cryogen. In this

I-I
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way the propellant could be contained easily without any net heat

absorption. We note that again the tank can be bare (in principle),

but is shaded from the sun. The shadow-shields can also be used in

combination with a refrigerator that extracts whatever heat has been

absorbed by the propellant. A refrigerator implies the presence of a

power source or a solar energy converter aboard the vehicle.

Between the two extremes there exists a wide range of cryogenic

propellant storage problems where the heat absorbed on bare tanks is

not tolerable but a finite amount of heat input would be. Here, in-

sulation can play a major role in controlling the heat input, provided

it can compete with shadow shields, radiators and refrigerators.

During the last few years, the concept of multiple radiation shields

has been developed to practical reality, in what is now called MLI.

This consists in a number of highly reflective foils laid layer upon

layer on the surface to be protected. Because of the high effectiveness

of these foils, it is possible with their use to reduce the heat flow

to a cryogenic tank in vacuum to very low values. So much so, that in-

cidental heat inleakage through pipes, insulation seams, tank support

and other penetrations can very easily predominate, and must be care-

fully controlled if they are not to nullify the effectiveness of the

insulation system.

Of course, the use of MLI need not preclude the use of other

methods in conjunction with it: shadow-shields, radiators, refrigera-

tors, or pre-flight sub-cooling to augment the heat absorption capacity

of the liquid cryogen. On the other hand, because of the effective-

ness (per unit mass) of MLI, there will be few intermediate cases where

its total replacement by some other scheme is justified.

B. Steps Involved in Solving the Thermal Problem

It is useful to delineate the solution of the thermal problem pre-

viously discussed, by subdividing it into four sequential logical steps.

Although each detail of each step need not be performed in the given

order, each step must be taken if the best solution is to be found.

The first step in determining the thermal protection system for

cryogenic propellants is to obtain information regarding the following:

(i) Characteristics of the trajectory and orientation of

the vehicle in space during the storage period, as

determined from over-riding non-thermal considerations.

(2) The space thermal environment, as determined from (i).

(3) The configuration of the vehicle: dimensions and

relative positions of components, details of any

component, e.g., electronics, living space, etc., whose

1-2
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temperature is fixed for operational reasons; in-

ternal heat sources if any, method of tank support,

and propellant transfer.

(4) Groundhold and launch characteristics°

(5) The thermal environment of the tanks, as determined

from (3) and (4).

(6) The manner in which mass additions, due to the thermal

problem and its solution, will affect over-all mission

performance. This determines the criterion to be

adopted in selecting and optimizing a thermal protection
scheme.

The second step, which can only be based on the first, is the

assessment of the possible thermal protection schemes, singly and in

combination, and a selection of one scheme° One basis for assessment

and selection is the criterion found from (6) above° However, questions

of practicality and reliability, micrometeoroid protection, groundhold

and ascent requirements, and other non-thermal aspects, must enter at

this point as well; in fact they may prevail over questions of payload

delivery performance.

The third step consists in optimizing the parameters associated

with the chosen scheme, using the criterion found from (6). This op-

timization is not purely mathematical; it consists also in using all

the potentialities of the chosen scheme to reduce heat inleakages to the

cryogenic propellant.

The fourth step consists in fully evaluating the performance of the

thermal protection system in its final form. This evaluation may in-

clude testing (prototype or model) under simulated conditions. It

should include a calculation, in as much detail as necessary, of the

total heat leak to the cryogenic tanks. This calculation will correct

any errors that have crept into the analysis of the third step due to

simplifications made in optimizing the system. The calculation will

include heat leaks through piping, tank supports and other penetrations

through insulation, as well as heat leaks through the insulation itself.

C. Organization of This Report

During the last four years, Arthur Do Little, Inco, has been

actively engaged on behalf of NASA in work on the thermal protection

of cryogenic tanks for storage in space° This report brings together

the results of the analytical portion of this work, in the form of

principles, theorems, guidelines, simplifications, recommended procedures,

formulae and charts°

1-3
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Because analytical work has been performed in all the four cate-

gories or steps outlined for the solution of the thermal problem, this

work is presented in the order shown for those steps. Where a procedure,

analytical result, etc., can belong in more than one category, it appears

under only one, but mention is made of this plurality of roles°

A large fraction of our analytical work has centered on MLI. As

a consequence, this area is more deeply analyzed than others. Neverthe-

less, this report, taken as a whole, presents a fairly complete tableau

of present-day techniques for dealing with the thermal protection pro-

blemo In addition, it can serve as a basis for launching studies into

promising areas.

Some topics of relevance to this report have been covered adequately

in separate topical reports (not merely in progress reports). Such will

be treated here only to such depth as is necessary to point out their

relevance and to extract the conclusions useful to the present work.

The separate publications will, of course, be quoted and included in

the bibliography°
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Iio THE SPACE THERMAL ENVIRONMENT

The thermal environment of space is considered to be purely

radiative, the radiating sources being the sun and the planets° The

natural satellites (moons) also radiate, but in a manner similar to

planets and in the present discussion they are treated as planets.

During interplanetary travel, solar thermal radiation is the only

significant thermal input from space. During the escape and capture

maneuvers, the incident flux from planets can be appreciable, but its

time-integral can be neglected compared to solar flux integrated over

the transfer period. On the other hand, if propellant is to be stored

in orbit around a planet for an extended period of time, planetary

radiation--emitted and reflected (albedo)--must be taken into account

in addition to solar radiation.

The two types of radiation differ in wavelength and directionality.
The latter point of difference lies in the fact that solar radiation

will be essentially collimated at expected distances (in solar radii)

of vehicles from the sun; whereas the same is not true of planetary

radiation at planetary radii. It is, of course, much easier to analyze

the input from a collimated beam; in fact, the fundamental method of

analyzing planetary radiation consists in breaking down the planetary

surface into a number of parts, each approximately flat and subtending

a small solid angle at the vehicle, so that incident radiation can be

considered as made up of a number of collimated beams, one from each

planet part.

In the present context, the meaning of the difference just dis-

cussed will depend on the aim of the radiation calculations.

A. Total Incident Power

It will be shown later (Appendix E) that the total heat flow

through multilayer insulation consisting of pure radiating foils, may

be calculated in a simple manner from a knowledge of the total radia-

tion flux absorbed on the insulation, independently of conduction in

the plane of the insulation foils. If the absorptivity is independent

of angle of incidence, the total absorbed flux is proportional to the
total incident flux.

If the tank is integral with the structure, the flux incident upon

it comes directly from space. It will also appear later that the total

flux on a shrouded tank can often be deduced from the total flux from

space incident on the shroud; moreover, in many other instances an in-

ference can be made with good approximation. Finally, an isothermal

shroud presents to a tank a black-body environment at a temperature

determined by total incident flux (see Appendix A) o The notion of

total incident flux is, therefore, of great use in a screening analysis

(steps i to 3 of Introduction).
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The total flux incident on a vehicle from a collimated beam is

merely the beam intensity times the projected area of the body in a

plane normal to the beam. Total incident solar radiation can thus be

calculated simply, once the required projected area is known. Total

incident planetary radiation can, in general, be obtained only by

summing up the products, "projected area x intensity" associated with

beams from the radiating planet parts, since each beam arrives from a

different direction with a corresponding different vehicle projected

area.

A method has been developed (I)* for calculating the projected

area of a convex body of revolution as a function of beam direction.

The results can, of course, be applied to solar or planetary radiation;

in the latter case, a projected area is calculated for each beam. In

addition, total planetary radiation has been calculated (2,3,4,5) for

simple shapes: sphere, cylinder, flat plate; the results are usually

available in tabular form.

B. Incident Power Distribution

At some point in the solution of the thermal problem (particularly

step 4 of Introduction), the heat flow through penetrations in multi-

layer insulation must be determined accurately. Also, it may be possible

to select for some of the major penetrations (e.g., pipes and struts)

a location for least heat flow. For these purposes, knowledge of total

radiation input does not suffice; it is necessary to know in detail the

distribution, over the vehicle surface, of radiant flux from space.

Moreover, complex vehicle shapes can be conceived where a determination

of the surface flux distribution followed by a summation over the surface

is just as efficient a method of determining total flux as is that

previously discussed (i.eo, summation of products involving projected

areas and elemental beam intensities).

The intensity of thermal radiation flux incident on a surface

from a parallel beam is simply the beam intensity multiplied by the

cosine of the angle of incidence. Hence, the distribution of incident

solar radiation over the surface of a vehicle of given shape is not

difficult once its location and orientation are known°

Local incident planetary radiation can be calculated on the same

basis, except that each point on the vehicle (or each elemental vehicle

surface part--sufficiently small and flat) has incident on it a number

of collimated beams, one from each planet part; each beam arrives from

a particular point on the planet and, hence, has its own intensity and

direction of incidence; the effect of each must be added. It will be

recalled that the receiving vehicle surface part was to be chosen

small enough to be considered flat; this simplifies calculations by

allowing use of the concept of planetary radiation incident on a flat

plate. This case has already been analyzed in the literature and the

results are available in tabular, (2,3,_,5) graphical,(6) and partly

in analytical form(1,2).

* Numbers in parenthesis refer to the bibliography in Appendix G.
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C. Accounting for Vehicle Movements

Excepting interplanetary travel with a fixed orientation toward

the sun, vehicle movement in space introduces a complication in

radiant input calculations. As the vehicle moves, its position and

orientation with respect to the sun and planets vary with time° There-

fore, the following will be time-variant: the vehicle projected area

as seen from the sun and various points on a planet; the angle of in-

cidence of radiation beams from the sun and planet parts on various

parts of the vehicle surface; and, the beam intensities.

In order to express the changing space thermal environment, with

reasonable control over all variables, there is need of a method to

account systematically for vehicle location and attitude. Such a

method has been developed;(I) it involves the transformation of

coordinates by matrix multiplication, parts of the matrix depending on

vehicle orbit and mode of orientation, hence, varying with time. The

method will be described briefly in the following paragraphs.

The vehicle surface is divided into a finite number of parts. The

parts must be of sufficient flatness to ensure the accuracy of the

ensuing calculations of incident power; they must also be small enough

in surface dimensions so that the subsequently assumed functional tem-

perature variation within the part (linear, polynomial, etc.) will give

result of the required accuracy.

The thermal radiation arriving at a small part of a vehicle's

surface depends on the distance of the vehicle from the radiating source,

and, for each source, on the relative directions of the source-vehicle

line, the surface normal at the source, and the surface normal at the

vehicle part. These quantities must be described in a single set of

coordinates, in terms of the vehicle position and orientation°

The direction of the surface normal at a vehicle part can always

be given as a vector in a coordinate system fixed on the vehicle

(vehicle coordinates). The surface normal can then be expressed in

the coordinate system most useful for the thermal radiation calculations.

This is done by multiplying the surface normal vector by a matrix that

represents the rotations which would be necessary to bring the vehicle

coordinates into coincidence with those of the useful system. The

vehicle coordinates themselves should have been previously chosen so

that the matrix is the simplest possible.

The choice of transformation (rotations) depends on the type of

orbit and the form of orientation stabilization (e.g., spinning, fixed

in solar space, aligned toward a planet, etc.). This is given in de-

tail in Reference (i).

In Reference (I) is also given a method of accounting for the

shadowing of one vehicle part by another during vehicle motion. It
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involves the measurement of shadowing factors, for instance by shining

a parallel beam of light from various angles at a model of the vehicle,

and measuring for each angle the unshadowed fraction of each part.

These fractions can then be incorporated in the calculation of the radia-

tion incident on each vehicle part from the sun and from the planet parts.

This method, of course, becomes unnecessary in the case of fully convex
vehicles.
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III. THE ENVIRONMENT EXTERNAL TO A TANK

In defining and discussing this environment, we adopt a point of

view that has been found to be valid. It is most useful in screening

and optimization studies, and often applicable in detailed heat flow

evaluations.

A propellant tank installed aboard a space vehicle is subjected to

an environment that will be broken down into a radiative and a conductive

part. The radiative part is the thermal radiation incident on the outer

surface of the tank insulation, or on the tank itself, if bare. The

conductive part consists of the temperature differences existing between

the ends of the elements connecting the tank to the other components of

the vehicle: the transfer lines, tank supports, control feedthroughs,

and any others.

One reason for this subdivision is the near-independence between

the two parts as defined, at least insofar as major heat inputs are con-

cerned. The important conductive elements (e.go, pipes, tank supports)

will have their surfaces shielded from the radiation environment and

are very nearly independent of it. Conversely, because the conductive

elements do not generally present large lateral surface areas, and

(more importantly) because they will be shielded, their effect on the

radiative part is small. Pipe internal radiation is generally coupled

to pipe conduction; however, both will be independent of the radiative

environment, and controlled only by end temperatures and pipe configura-

tion; for that reason, the pipe enters into the conductive part of the

environment (or as a separate third part, if desired).

It will be noted that pins, seams, gaps, overlaps, foam, penetra-

tion decouplers (see later), and any other penetrations within the

insulation, are part of the insulation and not of the environment. It

is the task of the designer to minimize the effect of these and enhance

the effectiveness of the insulation. On the other hand, a pipe or a

support cannot be considered by the designer as part of the insulation

since (i) these obviously do not insulate the tank but rather have the

opposite effect; and (ii) they will be thermally decoupled from multi-

layer insulation.

In defining the radiative environment, the possibility of a bare

tank was mentioned. This possibility exists when the tank is surrounded

by a shroud; in such a case, insulation might be applied on the inner
side of the shroud rather than on the tank. This point will be discussed

later.

A. The Radiative Environment

We consider two main cases: integral and shrouded tanks.
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i. Integral Tanks

Figure III-i illustrates schematically an integral tank. It is

seen that its radiative environment is (i) direct space radiation to

the tank sides; this can be made negligible in interplanetary space by

aligning the vehicle axis toward the sun; (ii) radiation to the tank

ends from emission and reflection between elements i, 2, and 3; here

the sources are parts i and 2, viz., the bulkhead and sides; the sides

(2) are really the tank supports and generally would be shielded with

multilayer insulation (inside and outside if the sun shines broad-

side, inside only if end-on).

Integral tanks do not appear promising for long-term missions.

First, their sides (and the insulation thereon) must be protected

against the environment of groundhold and ascent as well as against

micrometeoroids; this will necessitate some protective outer surface.

In effect they will be completely surrounded by some sort of shroud,

and so, even if designed as integral tanks, from the present point of

view they may be treated as shrouded tanks.

2. Shrouded Tanks

Figure 111-2 illustrates a shrouded tank. In this case the tank

does not view space directly from any direction. Its radiative environ-

ment will, however, depend on space radiation as well as on the type

of vehicle orientation, conduction around the shroud and geometry of

shroud and tank. It will also depend on the temperatures of adjacent

elements: payload, engines, adjacent tank, and on the manner in which
these elements are insulated.

The elements adjacent to the tank form part of its environment

with the shroud proper. In fact, the elements can be considered as part

of the shroud in a thermal sense, even in the case where some of these

elements contain heat sources.

We again refer to a later part of this report (Appendix E) showing

that the total heat flow through a blanket of insulation on a tank

depends on the total absorbed radiation alone. Now, if the total shroud

(including elements) were to fit rather closely over the tank so that

the view factor between the two (shroud and tank) were nearly unity,

then a good approximation for the total power incident on the tank

could be obtained from a knowledge of the surface-integral of the fourth

power of the shroud temperature. In fact, a close-fitting shroud acts

simply as one shield to be added to those of the insulation. The fourth-

power integral over the surface of the total shroud is easily obtained

from a heat balance with space and with internal heat sources (see

Appendix A).
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Note-- Schematic only - Piping omitted for clarity.

FIGURE III-2
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SHROUDED TANKS
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For a more loosely-fitting shroud (e.g., a cylindrical shroud con-

taining spherical tanks), the view factor from shroud to tank is less

than unity. This alters the relationship and brings in a dependence

on geometry, and internal surface emissivities. However, for reasonable

geometries the dependence on geometry itself is rather weak, and the

dependence on emissivities is weaker still. This weak dependence is

explained by the small amount of total heat leaking into the tank through

the insulation, as compared with the total radiative power incident

on the tank insulation; almost all this incident power is re-radiated

toward the shroud, the net result being the same regardless of emissivities.

Therefore, the total power incident on the tank can be estimated with

rather good accuracy by setting equal to unity the emissivities of the

shroud inner surface and of the insulation outer surface.

B. The Conductive Environment_ Inter-Component Heat Flow

Tank supports and pipes can be considered as conducting heat to

a propellant tank from two regions: (i) their warmer end and (ii) the

edges of foils where they penetrate insulation. Usually, the thermal

conductance of these elements is such that if they experienced the

same temperature gradient as does the insulation, they would conduct

heat to the tank in amounts far greater than that flowing through the

entire insulation blanket, thus defeating the purpose of insulation.

High temperature gradients can occur in penetrating elements if

the edges of the foils are allowed to come into thermal contact with

the penetration. Therefore, such thermal contact must be avoided. This

can be achieved by inserting a decoupler (or "buffer zone", or "thermal

separator") of isotropic, low-k material between the penetration and

the foil edges (see section IV-C). Such a decoupling procedure has two

results: to separate regions (i) and (ii) discussed above, and to

render the heat flow from (ii)--the foil edges--much smaller than that

from (i). Figure 111-3 illustrates the general effect of decoupling;

this matter will be taken up in more detail later. Thus, the necessary

decoupling permits a separation of the conductive environment from the

behavior of the insulation.

Major penetrations, laterally shielded against radiation exchange,

can be treated as cases of uni-dimensional heat flow, which makes the

problem simple once the geometry and end temmperatures are specified°

We wish at this point to show that conductive heat flow to tanks

through decoupled major penetrations can be kept reasonably low using

presently available materials and techniques. To illustrate this, we

choose a typical vehicle and mission, defined by the following situa-

tion. It should be stressed that these are chosen for illustrative

purposes only. The sample situation has further been simplified in

that the boil-off losses are arbitrarily specified a priori rather

than being optimized as part of the system. However, the conclusions

that are derived can be shown to be quite general. In this analysis
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we do not consider internal pipe radiation, which will be treated in

III oC.

i. Typical Situation

Payload 9,500 pounds

Power plant 2,500 "

Structure 2,500 "

Tankage 500 "

LH 2 5,000 "

LO 2 25,000 "

TOTAL 45,000 pounds

A 400-day mission.

A i0 g maximum launch acceleration.

Allowable boil-off during the mission:

5% of initial LH 2 and 5% of initial LO 2.

A configuration is shown in Figure 111-4o The LH 2 tank is forward-

most in the vehicle, followed by the LO 2 tank, payload and engine, in

that order. The relative positions of the tanks are justified on two

counts: a minimization of pipe internal pressures during acceleration,
and a minimization of heat leaks.

Consistent with this situation is a heat leak of 3.6 watts to the

LO 2 tank and 1.5 watts to the LH 2 tank. One might apportion one-third

of these leaks to piping and support on an equal basis. Hence, our

estimate of a reasonable heat leak to the LO 2 tank would be 0°6 watts

through piping and 0.6 watts through supports; similarly, for the LH 2

tank we would have 0.25 watts through piping and 0.25 watts through

supports.

2. Supports

Considering Figure 111-4, heat leakage would occur through the

supports separating the two tanks and those separating the LO 2 tank

from the payload or engine. The latter support presents the greater

problem because of (i) a larger temperature difference, and (ii) a greater

cross-section for heat transfer, since this support must withstand

greater loads. Therefore, we have considered only the support from the

payload or engine to the LO 2 tank since a solution of this case implies

a solution of the other, easier case.

The support must withstand a maximum compressive load to accelerate

about 30,000 Ibso of propellants at I0 g, ioe., the loading will be
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P = 300,000 Ibs. For a given material, this will impose a minimum

cross-section area A equal to P/S, where S is the allowable stress.

The heat leak will be

300°K

/-

q = (A/L) _ kdT

0°K

(111-1)

where k is the thermal conductivity.

support for a given maximum q is

L = (A/q) I kdT

Hence, the minimum length L of

(111-2)

The weight of the support will be

Weight = p AL

= q kiT = -- kiT
q S

(111-3)

where p is the density of the support material.

fixed for the particular vehicle and mission. The weight of the

supports will vary with the remaining factor in (111-3), namely

300°K

Weight_ L0°K kdT _ F

The quantity p2/q is

(111-4)

which contains only material properties and thus may be used as a

figure of merit for comparison of materials. Values of the factor F

are given in Table III-i, for several possible support materials,

including a stack of stainless steel washers, 0o001" thick. The values

of F shown are relative, the value unity having been assigned to the

washers.

As was shown in Equation (111-2), the required length of support

varies with the heat leak. However, this may lead to unreasonable

lengths. Supposing the length to be fixed, then since Ami n is still
given by P/S, the heat leak will be determined by substituting for A

in (III-i)
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TABLE llI-i

PARAMETERS F AND G FOR SUPPORT MATERIALS

(Integrals From 90 to 300 K)

F

300°K

fkdT

90°K

300°K

90°K

Material (Weight Factor,

Heat Leak Given)

(Heat Leak Factor,

Length Given)

Stainless Steel 670 670

Nylon 13 30

Micarta 7 24

Mylar 13 25

Teflon 3,140 380

Stacked Stainless I i

Steel Washers

* Values given are relative to Stacked Stainless Steel Washers. The

effective thermal conductivity of the washers was assumed to be

(1/670) that of solid stainless steel; this value may vary with

loading and surface treatment but is indicative of the values

which have been measured experimentally.
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P [kdT (111-5)
q - LS

In this case, the quantity P/L is fixed by the vehicle and, therefore,

the parameter G = _ kdT, representing the heat leak when the length

is fixed, may be used as a figure of merit. Relative values of G are

also given in Table III-i.

Considering Table III-i, the stacked stainless steel washers appear

to be the best by far. Calculations show that for our sample vehicle

and mission, six stacks of washers each i and 1/16-inch in diameter and

0.9 inch long, with a total weight of 1.37 ibs., will allow a leak rate

of 0.6 watts. Moreover, the washers would have to be supplemented by

a structural transition piece to transmit the load across to the LO 2
tank, over a length of from 3 to 5 feet (see Figure 111-4). The six

stacks of washers as insulating support, combined with a less efficient

insulation for a transition piece, will give a heat leak lower than

0.6 watts. If the elements must resist stress in two directions,

stacked cups (axes normal to the loads) can be used instead of the
washers.

3.

Based on reasoning similar to that employed for the supports, one

obtains, for piping, the same weight parameter, F, (see Table III-I),

if the piping is to be designed to withstand internal pressures only.

Thus, we would expect that the plastics would be superior to steel,

giving less weight for a given thermal resistance, or providing greater

thermal resistance at a fixed length.

Using the configuration of Figure 111-4, the pressures at the

"bottom" of the pipes, i.e., the point nearest to the engine, can be

calculated. The heights of the liquid columns producing the pressures

are based on full liquid tanks. Table 111-2 gives the dimensions

and the internal pressures arrived at, for both LO 2 and LH2, under a
i0 g acceleration.
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TABLE III-2

DATA GIVING MAXIMUM INTERNAL PRESSURES

IN FEED PIPING FROM TANKS TO ENGINE

Height - Feet Liquid Density Base Pressures

Liquid Tank Piping TOTAL ib/ft 3 (psi) at 10g

02 9 3 12 71.2 60

H 2 22 14 36 4.37 ii

From the above table appears an important advantage to placing the LO 2

tank nearest to the engine; if it is separated from the engine by the

LH2 tank, the LO2 column pressure becomes 180 psi for our sample con-

figuration.

Stainless steel would be a desirable material to use for piping.

Although its thermal properties do not appear the most promising, a

sample calculation indicates that it is still a useful material for

pipes. If we assume a 10-inch pipe diameter, uniform wall thickness,

and an allowable stress of I00,000 psi, the results for the LO 2 pipe
are: a required thickness of 0.003 inches (paper-thin); a weight of

0.96 ibs; and a heat leak of 0.16 watts. For the LH 2 pipe, the thick-
ness required is 0.0006 inches, the weight is 0.88 Ibs., and the heat

leak 0.008 watts. It is seen that there is no materials problem here.

In fact, using 0.Ol0-inch stainless steel pipe throughout, the resulting

heat leaks are 0.56 watts for the LO 2 pipe and 0.14 watts for the LH 2

pipe. The total weight of piping would be 18 ibs. Reinforced plastics

such as polyester or epoxy glass laminates could be used for the LH 2 to
reduce the total heat leak even further. Therefore, piping made of use-

ful structural materials for low temperature service installed with

permanent connections, can be used without causing an unacceptable heat

inleakage to the cryogenic storage vessel.

4. Conclusions

The heat leaks through the required tank supports and piping (de-

coupled from foil edges and from the radiative environment) can be kept

small with reasonable weights, using stainless steel or plastics. The

design of these elements is within the present state-of-the-art. If

necessary, stacked stainless steel washers or cups can be used to limit

the heat leaks through the supports.
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C. A Special Problem: Internal Pipe Radiation

The thermal coupling through a transfer line joining a cryogenic

tank to a relatively warm body (e.g., the engine) involves internal

heat radiation as well as conduction along the pipe wall. If thermal

radiation were absent or negligible, the heat flow to the tank could

be kept within reasonable limits with the use of realistic pipe wall
material and thicknesses, as we have seen in lll.B.3. Thermal radiation

from the warm end adds to the heat leak not only by contributing a radia-

tive inleakage, but by increasing the conductive flow as well. Energy

emitted at the warm end is partly absorbed by the walls at points nearer

the cold end; some of the absorbed energy is conducted and some re-

radiated toward the cold end. The resulting radiation and increased

pipe wall gradients can lead to heat leaks greater than that flowing

through the blanket of superinsulation over the entire cryogenic tank.

An analysis of this radiative-conductive effect is presented in

Appendix B. A straight pipe is considered, with attention centered on

an L/D ratio of three. The results of the analysis are also presented

in the Appendix, and indicate that a transfer line must be designed with

thermal radiation in mind; otherwise, a heat inleakage of many watts

can occur. The effective end emissivities should be low. However,

this may be difficult to achieve except with shiny baffles near the
ends.

Some variations in the design of the pipe, to decrease the heat

leak to values of the order of a watt or less, are possible: higher

L/D ratios, baffles at selected points, curved pipes.

When the pipe itself is in a surrounding of low radiation intensity
(i.e., in the shade), part of its outer surface near the warm end can

be left bare. In this way, the internally absorbed heat can be bled

by emission to the cold environment, and the temperature of the pipe

can fall off to low values over most of its length. The cold end

then receives radiation only from the distant circle of the warm-end

cross-section, and the radiative interchange is effectively kept low,

and is de-coupled from the conductive heat flow.

When the pipe is in a warm exterior surrounding, the same results

can be obtained by ducting some of the vaporized hydrogen to a point

near the warm end, and using the sensible heat of the vapor to cool

the pipe, i.e., to remove the absorbed radiation, there. This technique

is called vapor-shielding.
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IV-A. MULTILAYER INSULATION--GENERAL DISCUSSION

The concept underlying multilayer insulation (MLI) is that of a

number of highly reflective radiation shields placed between the radia-

tion environment and the surface to be protected, i.e., the cryogenic

tank wall. Conceptually, there is no other agent of heat transfer

through multilayer insulation but radiation impeded by many reflective
barriers.

Another feature of MLI generally implied is that adjacent shields

are spaced close enough together so that (i) the net interspacial

radiation in the direction parallel to the foils is zero in a region

where there are no "breaks" or discontinuities in the foils; and (ii)

the view factor from one foil to an adjacent one is unity.

i. Disturbin$ Influences

Where the conditions postulated above are met, many concepts

developed in the past (and some recently) become available to simplify

thermal analysis and insulation design calculations. Since also the

idealized conditions represent minimal heat leak to the tank, it is

desirable to eliminate any disturbances that detract from these con-

ditions. We will now discuss these disturbing influences with the aim

of understanding them in order to avoid them.

a. Gas Conduction

-4
Multilayer insulations must be evacuated to at least i0 torr for

adequate performance. Two approaches are possible. The first method

is to produce a pre-evacuated or cryopumped insulation by using a

flexible outside shield. There is considerable doubt that the required

high vacuum could be maintained at the various joints during the severe

vibration and acceleration of the launching. Unless the outside skin

can be removed at altitude, any noncondensible gases which might diffuse

through the outer skin or through the tank wall would increase the gas

pressure within the insulation. Also, in view of the possible out-

gassing of metal surfaces as a result of bombardment by high energy

radiation, it is questionable whether the required vacuum could be

maintained in space, unless adequate means for venting were provided.

The second approach is to exclude atmospheric gases by purging

with a noncondensible gas such as helium. In this case, the insulation

is not subjected to atmospheric pressure; however, reliance must be

placed on rapid venting at altitude.

Venting to the space environment is required in both approaches.

Such venting will depend on the geometric arrangement of the insulation

layers (e.g., exposure of the edges to the external vacuum or perforation

of the shields) which will be designed to enhance the pumping speed for

gas molecules.

IV- i
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i. Edse Pumping

To determine the equilibrium pressure when a panel of multilayer

insulation is pumped only at the edges, we must first calculate the

mean free path of a molecule confined in the space between two parallel

plates separated by a distance _. If the molecule leaves the lower

plate (Figure IV-A-I) with a cosine distribution in angle, then the

mean radial distance that the molecule travels before hitting the other

plate is

a

FIGURE IV-A-1 MEAN FREE PATH BETWEEN TWO PLATES

_/2

-
r = -- r cos 8 dw (IV-A-l)

where dw is an element of solid angle and O is the angle of the path

with respect to the normal to the plates.

Since dw = 2_ sin 0 d@ and r = a tan O, the integral can be evalu-

ated to give

--r - _ a (IV-A-2)
2

The corresponding two-dimensional diffusion coefficient for motion

parallel to the plane of the plates is

IV- 2
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D - 2 c r = _ c a (IV-A-3)

Now assume that the two plates are in the form of a long strip of

width _ and that molecules are outgassing from the interior surfaces

at a net rate of_ cm -2 sec -I. Then the diffusion equation for the

equilibrium density of molecules is

D _ 2N - 2 _ (IV-A-4)

_k2 _ a

where N is the density of the molecules and x is measured from the

center of the strip.

The solution for the case of a perfect vacuum along each edge of

the strip is

2 2 2

N - Da ( 4 x ) (IV-A-5)

The maximum density occurs at the center of the strip and is

max 4Da _ a 2
(IV -A - 6)

If the pressure is to be less than 10 -5 mm _g at 25°K, the gas
density must be less than 4 x 1012 molecules cm . Now assume, as a

typical example, that the shield consists of panels i meter wide com-

posed of radiation shields 0.002 cm thick and stacked 40 to the cm,

with spacers that occupy effectively 90% of the spaces between the

foils.

Then we can substitute the following values in Equation (IV-A-6):

= i00 cm

c = 3 x 104 cm sec
-I

a = 0.0023 cm
effective

1012 -3N = 4 x cm
max

The maximum allowable outgassing rate is therefore

108 -2 -I= 2 x molecules cm sec
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This corresponds to the removal of one monomolecular layer from all ex-

posed surfaces every two weeks. Much higher outgassing rates than this

are likely to be encountered if the radiation shields and spacers are

exposed to atmospheric pressure at the time of launching. In which

case, adequate venting must be provided to prevent destructive effects

due to sudden pressure reduction.

Another difficulty with edge-pumping is that at the pumping areas,

the innermost foils must be brought into contact with the vacuum out-

side. This provides places where incident thermal radiation can bypass

most of the shields and penetrate almost directly to the insulated tank.

ii. Broadside Pumpin$-of Perforated Radiation Shields

Let _ be the perforated fraction of the surface of each radiation

shield, so that _ is the molecular transmission coefficient. Thus, if

N is the density of molecules on one side of a shield and N' the density

on the other side, the net flux F of molecules through the shield is

i Nc T _ i N'c I" (IV-A-7)
F - 4 4

For a stack of shields, this equation can be written in the form

F = _ c I" "O N (IV-A-8)
4 _n

S

where n is the series number of the shields.
S

As before, letQbe the outgassing rate per cm 2 of actual shield

surface. Then the number of molecules emitted per cm 2 per second into

the space between two shields is 2Q(I -_). Thus, for steady-state

flow,

c_" _2N

4 2

S

2_( i -_" ) (IV-A- 9)

If the array of shields is in contact with a perfect vacuum on one

side and an impervious wall on the other side, the boundary conditions

are

_N = 0 for n = 0

n s s

N = 0 for n = n
S
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Equation (IV-A-9) gives for the maximum allowable molecular density,

assuming _ is constant;

N 4_ (I -_)n 2- (IV -A -i0)
max _ T

It is of interest to consider under what conditions broadside

and edge-pumping are equally efficient. On equating the values of the

outgassing rates given by Equation IV-A-6 and IV-A-IO, we find for the

required relationship

= n _4_

a 1-_

If n = I00, _ = 0.I, and a = 0.0023 cm, we find that_ = 2.3 cm. This

means that for edge-pumping to be as efficient as broadside pumping

with 10% perforated shields, the edge-pumping must be applied along

lines separated by only 2.3 cm. The excessive exposure of the inner-

most foils in such a design appears to be quite impractical. We,

therefore, conclude that the method of broadside pumping is much pre-
ferred.

The allowable outgassing rate with broadside pumping may be calcu-

lated from Equation IV-A-10 with the following values:

1012 -3
Nma x = 4 x cm , _ = 0.i,

-- 104 -In = i00, c = 3 x cm sec

Then

i011 -2 -I= 3 x cm sec

Actually, the allowable outgassing rate must be considerably less

than this, because _ must be well below 0.i to prevent excessive radia-

tion transfer through the perforations in the shields.

iii. Effects of Static Gas Density

Consider two adjacent radiation shields at temperatures T and T +

_T. The number of molecular impacts on each surface per unit area per

second is N_/4, where N is the number of molecules per unit volume and

c is the mean molecular velocity. If the accommodation coefficient is

unity and the mean free path of the molecules is large compared with

the spacing of the shields, the average kinetic energy of the molecules

IV -5
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striking one shield is CvT and that striking the other shield is

cv(T +_T). The heat transfer rate is therefore

N7
qc - c A T4 v (IV-A -ii)

m

= _ SckAT

since cv is approximately equal to the translational kinetic energ_
per degree at the low temperatures where conduction is important.

The radiation transfer rate is

qr m

A (_-T 4)

2
-- - 1
£

(IV -A- 12)

where e is the emissivity of the surfaces.

The total heat flux is therefore

3
q = _ Nc'k A T

+ _(O'T4)
2

" 1
E

(Iv-A-13)

We must now sum this difference equation over the set of n

successive gaps between the shields. In doing this, we assume that

e is constant and that N OC I/T and _ __, since the pressure is

constant. The result of the summation is:

3 _-(T2 4 - TI 4 ) (IV-A-14)

nq ffi _ NlClk (_i T2 - TI ) + 2 _ I

£

m

where NI, Cl, T 1 refer to the low-temperature side of the shield and

T 2 refers to the high-temperature side.

* In reality the energy carried is not cv but (cv + k/2) if one

accounts for the fact that those molecules with the higher velocities

will travel between the shields in a shorter time. Also cv is (3/2) k

only if the temperature is sufficiently low that no internal energy

modes are excited (or if the gas is monatomic). Eq. (IV-A-II) is,

however, a good approximation in most cases.
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b. Radiation Transfer Within Multilayer Insulations

In addition to the transmission of heat by gas conduction through

multilayer insulations, the following radiation transfer conditions

arise:

i. Radiation Transfer Through Perforated Radiation Shields

Figure IV-A-2 shows the radiation entering and leaving on the

two sides of a perforated shield of emissivity ¢, transmission co-

efficient _ , and temperature T. The energy balance equations are

I 11 -- iI+ T I+ + (i T ) (i - e) I' + (I -T) ¢0"T 4

(IV-A-15)

I '__ = _I_ + (i -T) (i - e) I+ + (i -T) e G-T 4 (IV-A- 16)

I+' - I'_ = I+ - I_ -- qr (IV-A-17)

I
+

I

!

+

!

FIGURE IV- A-2 RADIATION TRANSFER THROUGH

PERFORATED SHIELD
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Equations IV-A-15, 16, and 17 are satisfied by relations of the

form

I+ = A - kns (IV-A-18)

I = B - kn (IV-A-19)
- S

_" T4 = C - kn (IV-A-20)
s

where A, B, C, and k are constants and n , as before, is the series

number of a given shield. To get I'+ an_ I' we replace n s by n s + i.

The constant k is the gradient _ (_T 4)/_ns]

On substituting equations IV-A-18, 19 and 20 into equation IV-A-15

and 16 and noting that A - B is the net radiation flux qr, we find that

+ (2 - A 4
= (IV-A-21)

qr (2 - _) (i -'I") 2% n
s

Now suppose that a stack of n shields is placed between two black

sheets at temperatures T 2 and TI. Then, on adding the radiative im-

pedances of the two outer gaps to that given in IV-A-21, we find for

the flux:

_

(T2 TI 4) o- (T2 4 TI 4)

qr = _ = o (IV-A-22)
(2 E) (i

n i + (A,- i ) n
i + _ + (2 - e)T

where E' is the effective emissivity of the perforated foils:

e' = c + (2- e)I" (IV-A-23)

Note that equation IV-A-22 gives correct results for c' = 0 and i.

Let ¢ = 0.05 and _ = 0.i. Then c' = 0.245. Thus, a trans-

mission factor that is large enough to give an appreciable molecular

pumping speed increases the effective emissivity of the shields by a

factor of five.
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ii. Radiation Transfer by Closely Spaced Shields

The usual formula for radiation transfer through a stack of radia-

tion shields does not apply when the spacing of the shields is less

than the wavelength of the peak of the black-body spectral distribution

corresponding to the temperature of the shields. Two effects set in at

these close spacings--wave interference and radiation tunneling. Wave

interference of the emitted radiation occurs in the narrow gaps between

the shields and may increase or decrease the energy transfer, depending

on the spacing° Radiation tunneling allows transfer of radiation that

ordinarily suffers total internal reflection inside the shield material;

the resulting energy transfer increases exponentially as the spacing

decreases. The two effects together give an energy transfer rate per

unit area which becomes, in the limit of zero spacing,

4

n (T2 4 T14)
q = n2 + k 2 _- -

where n and k are the real and imaginary parts of the complex refrac-

tive index,_ is the Stefan-Boltzmann constant, and T 2 and T 1 are the
temperatures on the two sides of a gap.

The formula implies that the radiation density e' and velocity of

propagation c' in the shield material are:

n2_T 4
E t _

C

2
! n c

c -

2 k 2n +

For moderate values of the absorption index k, the flux formula pre-
dicts a transfer rate between two ciose shields greater than that
between two black surfaces,

In the case of metal shields, when the spacing between the two

shields is increased from zero, the radiation transfer rate at first

rises sharply to a high maximum and then falls below the usual value

for widely spaced shields. The flux returns to the normal level when

the spacing exceeds about one half of the wavelength of the black-

body peak. (See Figure IV-A-3)
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c. Gas Leakage from Cryogenic Fuel Tanks

With present technology, it is practically impossible to make

large tanks for liquid hydrogen with gas-tight welds. The leak rates

from large tanks may be so high that the performance of multilayer in-

sulations will be seriously degraded unless proper allowance can be

made in the design of the thermal protection system. Similar problems

may arise when the helium-purged gas is vented.

io Minimum Heat Flux Through a Stack of

Perforated Radiation Shields

The analysis of the minimum heat flux through a series of perfora-

ted radiation shields can be based on the preceding calculations, and

the heat transfer rates due to both conduction and radiation can be

obtained for any given value of the perforation coefficient T. It is

clear that the total heat flux must pass through a minimum as T varies

from 0 to I, since the radiation is very large when _ is near unity

and the conduction is very large when _ is near zero. It is, therefore,

of interest to find that best value of T and the corresponding minimum

value of the flux.

The flux due to gas conduction near the cold side of the stack of

shields, where the gas density is highest, is, from Equations IV-A-10

and IV-A-II,

3 n2_(l -T)k /% T

qc - 2 T

where _T is the temperature difference across a single gap. We will

make no appreciable error in assuming that this expression holds over

the whole set of shields, since the effect of conduction is negligible

except near the cold side of the stack, due to the rapidity with which

the radiation factor O'T 4 rises with T.

The radiation rate can be written with sufficient accuracy, from

equations IV-A-21, 22, and 23, as

c + (2 - c)T _-/k T 4
qr = "F

where /kT 4 refers to one gap. We have omitted the i in the denominator

of equation IV-A-22 to facilitate further calculations. Since n is

large and e' small, this makes no appreciable difference.

The sum of these two expressions is the total flux q across a

given gap and is a difference equation in AT and _T 4. When this

IV-II

3rthur _.=;l.ittlr,_nr.



equation is summed over all the gaps and the result divided by n, we
obtain for the total flux

q - (2 - e) (i -T)

(T24 - TI 4)

n

3 (I -T)n
+ _ _k(T2-T I)

_-(T24 - TI 4)

2- l)n(e

+ ( _-e ) °'(T24 TI 4) T + 3 (i -T)n- (i-_)n _ _'k (T2-TI)

(iv-A-24)

The first term in equation IV-A-24 is the radiation flux without

perforations. The second term is the increase in radiation due to the

perforations. The third term is the flux due to conduction by the gas

molecules in the spaces between the shields.

For any fixed value of n, this expression goes through a minimum

for a certain value of the perforation coefficient _'. The optimum

value of T is given by

i j 1/2

3

T 2 _k(T2-TI) (_--_) (IV-A-25)

i -T - n O" (T24 - TI 4)

The corresponding minimum value o£ q is

qmin (n) =

_- (T24-T 14)

2
(7 - I )n

1/2

(IV-A-26)

Equation IV-A-26 shows that, no matter how large n may be, the
flux can never be less than the value

IV-12
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-- 1/2

qmin (_) = 16 _'k(r2-r I) _" (Tm4-TI 4) (_--__2e)
_t

(IV-A-27)

Table IV-A-I shows how qmin (_) depends on the outgassing rate

under the following conditions:

T 2 = 300°K

T I = 25°K

e = .05

-16
k = 1.38 x i0

-i
erg deg

For comparison, when n = i00, the first term in Equation IV-A-26

is 118 erg cm -2 sec -I.* This value corresponds to the optimum heat

flux for an interplanetary mission, with only radiation transfer through

the shield. Table IV-A-I indicates that this optimum flux cannot be

obtained with practical shielding if the outgassing rate is higher than
i0 I0 molecules cm -2 sec -I.

°

TABLE IV-A-I

MINIMUM HEAT FLUX AS A FUNCTION

OF OUTGASSING RATE

Outgassing Rate

-2 -i)(molecules cm sec

qmin (_)

-2 -i)(erg cm sec Watts/ft 2 x 102

I0 I0 33 0.31

Ii
I0 105 0.95

12
i0 330 3. i

1013 1,050 9.5

The flux q, as given by equation IV-A-24, is plotted in Figure

IV-A-4 in Btu/ft2-hr as a function of the perforation factor _'for

various assumed values of the hydrogen gas flow rate _o (expressed in

* 118 erg cm -2 sec -I = 1.09 x 10 -2 watts/ft_

IV- 13
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-2
both molecules/cm -sec and ib/ft2-hr). The graph refers to the

case of i00 shields of emissivity 0.05, with outer and inner tempera-

tures of 300°K and 25°K, respectively.

Figure IV-A-4 shows that an optimum perforation factor exists for

any given gas flow rate. Table IV-A-2 gives the optimum value of

and the corresponding minimum heat flux q for various values of the

gas flow rate _o" The table shows that a hydrogen flow rate of
2.5 x 10 -7 ib/ft 2-hr impairs the insulation by a factor of about two.

This leakage rate corresponds to only 1 ib per year from a tank of
500 ft 2 surface area.

TABLE IV-A-2

OPTIMUM PERFORATION FACTOR T'opt_ AND

MINIMUM HEAT FLUX q,.in FOR VARIOUS

GAS FLOW RATES _
o

o qmin

ib(__H2/ft2- hr) _ (Btu/ft 2 - hr)

0 0 0.04

2.5 x 10 -7 0.01 0.07

2.5 x 10 -6 0.03 0.14

-5
2.5 x i0 0.ii 0.38

2.5 x 10 -4 0.27 1.24

For the leakage rate of 2.5 x 10 -4 ib/ft2-hr, which corresponds

to a loss of 3 ib/day from the 500 ft 2 tank, the total heat input is

600 Btu/hr, which would boil off all the hydrogen in two months.

Actual leak rates may be even larger than 3 Ib/day.

These calculations indicate clearly that the gas leaking through

the seams of the tank should not be pumped by the external vacuum

through the insulating blanket. Instead, the gas should be vented

directly to the external vacuum by means of a double-walled arrangement,

shown schematically in Figure IV-A-5. The leakage of gas into the

insulating layers will be greatly reduced if the outer tank wall is

reasonably gas-tight.
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Double Walled Tank
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F IGURE IV-A- 5 DIRECT VENTING OF LEAKING GAS BY DOUBLE-

WALLED TANK CONSTRUCTION
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The vent pipe will probably have to extend well beyond the insula-

tion to prevent diffusion of the vented gas back into the perforated

shields from the outside. The static pressure at the exit of a pipe

of cross section i cm 2 that transmits 3 pounds of hydrogen per day is

about 5 mm-Hg; thus, aerodynamic rather than free molecular flow occurs

at the exit.

A much better solution to the gas conduction problem than the double-

walled tank arrangement would, of course, be the development of a method

for making vacuum-tight welds. It is likely that successful long-

term cryogenic storage in space will depend on this development.

The configuration of the perforations in the multilayer insulation

is of considerable importance. For a given perforation ratio, the

highest gas-pumping performance, relative to the inward radiation

leakage, is obtained with a large number of small holes with an

average spacing much less than the shield separation. This perforation

arrangement was assumed in the derivation of Equation IV-A-24. The

reason why this is the best arrangement is that the net flow pattern

for both gas molecules and radiation is then in the form of straight

lines perpendicular to the shields , except in the immediate vicinity

of the shields themselves. The two flow patterns are illustrated in

Figures IV-A-6 and -7. The only difference is that some of the radia-

tion flow lines start and terminate on unperforated parts of the shields,
whereas the molecular flow lines cannot do this.

On the other hand, when the perforations are widely spaced rela-

tive to the shield separation, as in Figures IV-A-8 and -9, the radia-

tion flow is much more nearly perpendicular to the foils than is the

gas flow. The reason is that the gas can flow only through the holes,

whereas the radiation can also flow directly through the non-perforated

regions by the process of absorption on one side of a foil and re-

emission on the other side. Since the gas must take longer paths through

the foils than the radiation, the pumping efficiency, relative to the

radiation leakage, is much less for very widely spaced holes.

Calculation of the flow patterns of Figures IV-A-8 and -9 would

be very difficult; but one can see qualitatively that not much change

from the conditions of Figures IV-A-6 and -7 will occur if the hole

spacing is of the same order as the shield spacing. On the other hand,

for very large hole spacings, the gas flow rate approaches zero, while

the radiation rate drops to a limiting value. For the case of regularly

spaced holes that are staggered from shield to shield as in Figures

IV-A-8 and -9, the radiation flux has the limiting value:

4
_- (T2 TI 4)

n (_- i)( T) + i

(IV-A-28)
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FIGUREIV-A-8 GAS FLOW PATTERN FOR WIDELY SPACED

PE RFORATIONS

F IGURE IV -A- 9 RADIATION FLOW PATTERN FOR WIDELY SPACED PERFORATIONS
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For randomly distributed holes the limit is

_-'(T24 - TI4)
q = 2 i - "I" (IV-A-29)

n (_- i)(_-$-_ ) + I

For small values of/_ these two expressions are almost identical.

On the other hand, the radiation flux for closely spaced holes,
as shown in Equation IV-A-22, is:

4
(]- (T2 - TI 4)

q = (IV-A-B0)

2 - +ln + (2 - c) T

A comparison of (IV-A-29) and (IV-A-30) shows that, for con-

stant _ , the radiation flux increases considerably as the hole spacing

is decreased, but the gas conduction flux decreases by a still larger

amoun t.

Production problems impose a practical lower limit on the diameter

of the perforations as well as their spacing. New production techniques

will have to be devised to obtain the desired perforations and thus

increase the insulating performance of multilayer insulations in an

actual installation.

d. Venting During Ascent

Multilayer insulation may be immersed in a non-condensable gas

at a pressure of one atmosphere at launch. As the vehicle ascends

through the atmosphere the interstitial gas vents to a milieu of

constantly reducing pressure. Accordingly, during ascent a pressure

gradient from inside-to-outside exists within the foil system and the

question arises as to the ability of the insulation system to withstand

these differences without damage. The analysis presented in Appendix

C is intended to shed some light on the nature of this problem, and

to provide some guidance to the design of experiments which should be

made to prove the adequacy of the insulation system to withstand

ascent decompression.

e. Solid Conduction

The concept of radiation shielding with radiative heat transfer

dominating implies the absence of mechanical contact between adjacent

foils or between foils and spacers. Contact will occur when mechanical

pressure is applied in the direction normal to the tank wall. This
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pressure is due to gravity, differential thermal contraction, stressing

on application, or externally applied loading.

The effect of mechanical load on the density and thereby on the

heat flux through a sample of a multilayer insulation is of consider-

able practical significance. An increase in mechanical load will cause

the radiation shields and spacers to be compressed into a thinner

sandwich of higher density. A subsequent decrease in mechanical load

will allow the radiation shield and spacers to return to their original

density, provided that no permanent deformation has taken place.

We examined the capability of several insulation systems to

withstand compressive mechanical loading.

The results of the tests, which appear in Figure IV-A-IO illustrate

the following:

As the mechanical load increases, the solid-conduction contribu-

tion to heat transfer becomes dominant.

The differences in heat flux at zero load are the result of

differences in the spacer materials. Spacers consisting of oriented

fibers have a high contact resistance, which impedes solid conduction.

With no external load on the insulation, the closeness of the packing

of these fibers (and hence the contact resistance) depends upon the

previous history, such as number of load applications, method of manu-

facture, and storage conditions.

2. Conclusions from Experimental Evidence

Experimentsboth with the thermal conductivity apparatus and with

an insulated tank system (see Section IV-F) show that it is possible to

design and apply multilayer insulation so that radiation is indeed the

dominant mode of heat leakage into the tank. Therefore, the concept

of idealized MLI as defined on page IV-I is realistic.
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3. Concepts Based on Truly Radiative Shielding

Consider a portion of the surface of a cryogenic liquid tank

covered with multilayer insulation having uniform thermal radiation

of intensity I incident upon its outer foil. A steady-state heat

balance equation may be written, equating the absorbed incident power

to the sum of the re-radlated and tank input powers, in terms of temp-

eratures and radiative properties;

4 (IV-A-B2)
O_oI = _-_o sT + (Q/A) tank

where 0_° is the absorptivity of the outer foll surface for the
incident radiation, _ is the emissivity of that surface and T is

o s
its temperature. The terms in the equation all have units of power

per unit of surface area.

a. Adiabatic Wall Temperature

Suppose the last term in Equation (IV-A-32) were zero; this is

the so-called adiabatic case, in which all absorbed incident power is

re-emltted. From the simplified equation, the temperature at which

this emission occurs can be calculated; let this be T . Then from

(IV-A-32), a

I
4 0_o

T - (IV-A-33)
a _ _-

o

The concept of an adiabatic wall temperature is extremely useful

in evaluating the heat flow into a tank, even in cases where the

incident flux is not uniform, or when the foils are not pure radiators

but also conduct heat through contacts and penetrations, as will be

seen later. At this point we still consider the isimplifying conditions

to introduce another concept.

b. Shielding Factor

From the definition of Ta,
(IV-A-32) :

Equation (IV-A-33), we re-wrlte

_-E o(Ta 4 - Ts4) = (Q/A) tank (IV-A-34)

But for pure radiating foils in a uniform environment, an express-

ion can be found and substituted for (Q/A)tank!

4 4) _- (Ts4 _. 4 ) (IV-A-35)
=-_ o(Ta - T =
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where e is the emissivity of the foils (assumed independent of

temperature) n is their number, and Tli q the liquid tank temperature.

For cases of interest, (i.e., Tliq a cryogenic temperature),

T_ 4,=_=T$4. Also, e_=0.05, so that 2/e_-_l. Therefore (IV-A-35) can
be simpllfied to

4 4) e T 4 m _ T 4 (IV-A-36)(Ta - Ts - 2ne s s
O

Solving for T s we find
4

T
4 a

T - (IV -A-37)
s i+_

We also have

T 4 _ T 4 = _____ T 4 (IV-A-38)

a s i+_ a

a relation that can be substituted into (IV-A-34) to obtain

4

(Q/A) tank - i + _ eo Ta (IV-A-39)

which, from the definition of Ta, can be written

_ K_ _ I (IV-A-40)
(Q/A) tank - i + _ o

The pure number,<, is generally very small. For example, with

e = 0.05, n = 30, eo = 0.8, _ is about 0.001. This means, first of
all, that it can be neglected compared with unity. Once this is done,

the physical significance of _becomes evident. It is the reciprocal
of a shielding factor. This is clear from the last equation, which states

that the heat flux into the tank equals the absorbed flux divided by the

shielding factor° Also, from Equation (IV-A-38) we see that the outer

foil temperature is very nearly equal to the adiabatic temperature:

4 4

Ta Ts _- -- (IV-A-41)

T 4 - i+_ =
a

4. Parallel Spreading of Disturbances

The spreading of disturbances brings into play the ratio of

thermal conductivities parallel and perpendicular to the foils. The

concept of conductivity, in either of these directions, has to be

applied with some care. First it is necessary to consider as a

continuum a set of discrete foils separated by spacers and/or vacuum;

of course, this can be justified when enough foils are involved. An
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effective parallel (i.e., in the plane of the foils) conductivity may

then be defined in terms of some mean foil material conductivity,

thickness and number density. A similar statement may be made about

an effective perpendicular conductivity, except for the strong temper-

ature dependence and hence variation in a direction normal to the

foils, of a conductivity so defined, especially for foils that act as

true radiation shields (i.e., without conductive contacts between

foils and/or spacers).

In spite of the complication Just outlined, it has been found

most useful in discussing the spreading of temperature perturbations

to use the concept of effectlve conductlvltles in the two perpendicular

directions, defined by over-all behavior; although this concept will

not be useful for other appllcatlons (e.g., in defining shielding

factors). We define these quantities as kj! and kl .

In the discussion presented in Chapter IV-A-3, the behavior of

insulation was treated as a uni-dimensional problem, with distance

normal to foils as the independent variable. We define a disturbance

as a deviation from this uni-dimentionality; this definition implies

parallel conduction and some non-uniformlty causing such conduction.

There are two main causes giving rise to parallel conduction:

variation in incident flux over various portions of the tank surface,

and penetrations due to piping, structural supports, seams, etc. This

is illustrated in Figure IV-A-II. The first can introduce local

parallel variations in T (and hence in foil temperature) over the
&

tank; the second can introduce local sources of variations in foll

temperature, which can spread over the tank surface to distances that

depend on the ratio k, /k_ . This spreading is discussed in Appendix
D.

There is another basic difference between these two main causes.

Variation in surface flux can spread less in depth because the heat

transfer coupling between foils is mainly radiative, and, inherent

to the design of the multlfoil insulation, the coupling between foils

is made weak, whereas the conductance parallel to the foils is

relatively large. Therefore the spreading of the effect is localized

to outer layers. In the case of penetrations, all the foils are

involved in the temperature perturbation, by thermal contact at the

material penetration (e.g., at a pipe). Therefore, parallel conduction

involves all the foils in this case. One exception to this is the gap,

which is a discontinuity in the insulation that leads to additional

heat leaks by radiation alone.

The discussion of Appendix D leads to the conclusion that the

distance of perturbation decay is

-f--
J;

Xdecay-_- BIT (IV-A-42)
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Now if we define the two conductlvltles according to the concepts

introduced in this section:

kll _ kftf n/B (IV-A-43)

k_ _ (measured constant) _ (IV-A-44
n

where kf is the conductivity of foll materials

tf is the thickness of the foils

n is the number of foils

B is the thickness of insulation

Note that n/B has a limit imposed by the desirability of avoiding large

conductive heat flow to the tank (viz. Figure IV-A-10). From the last

three equations we can express the decay distance as

Xdecay = (constant) nlkf_ (IV-A-45)

When the foils act as pure radiators at a constant emissivity E , the

constant can be evaluated, to give, approximately,

2kftf

Xdecay = nl/_- r 3 (IV-A-46)

s

Where T is the outer foll temperature.
s

The last equation illustrates a weakness of the concept as applied

to pure radiation foils: assuming T given, the local value of k_

T3foil s -3/2varies as and the local Xdecay varies as Tfoll The last

formula implies that Xdecay is the same for all foils, whereas it will

be longer for the colder foils. Nevertheless, even for pure radiation

foils the decay distance varies directly as n_ k_m_ The idea of

using an effective n suggests itself; this corresponds to the physical

phenomenon previously alluded to, namely, that only a portion of the

foils, near the top, participate in conducting heat absorbed from the

radiation environment toward a penetration or toward a region of less

intense incident radiation.

The expression in equation (IV-A-46) assumes a much more precise

meaning in the analysis of thermal shorts though pure radiation foils,

given in Appendix F.

5. General Effect of Conduction on MLI Performance.

It is of interest to determine the effect of the internal perpen-
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dicular conduction component within foils, due to compressive contacts,

large numbers of small attachment pins or threads, etc., which are not

truly thermal shorts leading to local temperature perturbations, but

are disposed throughout the insulation and have an effect everywhere

within the insulation. In particular, it is important to ascertain

whether these will cause an appreciable change in the temperature of

the outer foil. To form some idea of this effect we consider a blanket

of insulation in a uniform radiation environment, hence_ once again a

uni-dlmenslonal situation.

In the absence of such conductive elements we have, as in Equation

(IV-A-34), for pure radiation heat transfer through the foils.

(Ta4 - T 4) = (Q/A)rad (IV-A-47)_-6"o s
0

In the presence of the conductive elements we must add a term to the

right-hand side of this equation:

']-eo(Ta 4 - Ts 4) = (QIA)rad + (Q/A)cond (IV-A-48)

By subtraction we obtain

4 4)
"5-&-o(Ts r = (Q/A) (IV-A-49)s cond

o

A combination of (IV-A-37, 39) gives

= < T 4 (IV-A-50)(Q/A) rad _-e o s '
O

which, by division into (IV-A-49) gives

4
T 4

Qcond s - TO S

Qrad _ Ts 4
O

(ZV-A-51)

In these equations T and T are the outer foil temperature with and
S S

O

without the conductive component, respectively.

As an example, consider 20 foils of emissivity 0.04, with
O

equal to unity; then _ equals 0.001. To produce a one-percent change

in the fourth power of the outer foll temperature (or one-quarter
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percent change in its first power), the conductive heat leak must be

ten times as large as the radiative heat leak; this would hardly be

tolerated. The required ratio of conductive to radiative heat leak
increases with the number of foils.

We conclude that in a properly designed system the internal

conductive component of heat leak through foils will not alter the

outer foll temperature appreciably.

6. Effect of Variable Foil Emissivity

The emissivity of the foils is temperature-dependent. This

dependence is not usually taken into account, the function _ (T)

being rather uncertain in the absence of laboratory-controlled surface

purity. Hence, an estimate of the error involved in assuming _ to

be constant is useful. To obtain such an estimate we assume a power

dependence, which is reasonable according to theoretical and experi-

mental results reported in the literature. (7,8)

Let the outer foll temperature of multilayer insulation on a

tank be T|, and the tank temperature To, and let this be true out to

large distances (uni-dlmenslonal case). We have, for the heat flow

between two adjacent foils, a and b:

Q
_-(Ta 4 - Tb4)

2
-- - 1

E

_(Ta 4 - Tb4)
2

(IV-A-52)

When the number n of foils is large, it is a good approximation to

write

A (T4) = 4 T3 _T

so that

Q = 2 _._-_T3 2kT

If we now assume a power dependence for _ ,

(IV-A-53)

(IV-A-54)

(IV-A-55)
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°

where _ is the emissivity at temperature T
I

2d(- (3 + _)
Q = _L_ T

T _ _ T
I

then
I'

(IV-A-56)

The differential process can now be reversed to give

2 "IY_..' {_4+ O)
Q = ' _-_ (T A) (IV-A-57)

(4 + , )TI_

At steady-state, the same amount of heat flows across each space

between foils, so that equations similar to (IV-A-57) can be added once

for each space, namely n times:

2 i]-_ 4 +_ 4 + %
nQ = I (T - T )i o

(4+_) rI

or

2 "_c _ TI4 _ (TolTI)4 +_ (IV-A-58)0 = (4 +_)n - !

Now if the emissivity were constant at a valueEr , (i.e., if ._ were

zero), we would have

i-TI 4 I (TolTI) 4QI= 0 " 2n " i (IV-A-59

At cryogenic temperatures, the second term in brackets of both

(IV-A-58) and (IV-A-59) can be neglected. Henae, we can form the ratio

QI=0 4 +4 ._ (IV-A-60)
Q_ - 4 - I+ _

If the number of foils were truly infinite, the results above would
be exact. It is seen that the fractional error is _4. Common values

for _ are between one-half and unity, giving an error-- between 12 to

25%.

Of course, if the emissivity is assumed constant at some inter-

mediate value, the error can be reduced; in fact, the value of _l
can be so chosen that the error is eliminated.
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7. Thermal Diffusion in Superinsulation

The transients in superinsulation will be highly complex, involving

as they do radiation and conduction (gas as well as solid), in a truly

three-dimensional medium. However, it is our purpose to consider here

only simple concepts such as diffusion parallel and transverse to the

insulation foils. In particular, we wish to form an estimate of the

transient time for heat flow in each of these two directions.

The transient time may be characterized by-_ :

-- X2/at (IV-A-6 i)

where X is a characteristic dimension in the direction of heat flow,

a t is the thermal diffusivity of multifoils in that same direction.

ao Diffusion Parallel to Foils

For flow parallel to foils the characteristic dimension will be the

tank size, for instance the diameter D of a spherical tank. The transient
time will be

D2 D2_fcf

_ - - kf (IV-A-62)to afoils

where the subscript f refers to foil materials. _ , c and k are density,

heat capacity and thermal conductivity, respectively. For pure aluminum

foils, the transient time has the order of magnitude

_l 2 (D/10) 2 days (IV-A-63)

where D is in feet. Note that neither the thickness nor the number of

foils enters into the relationship.

b. Diffusion Normal to Foils

For flow across the foils the characteristic dimension will be the

thickness B of the insulation• The density and normal conductivity of
foils are

e = Cf tfn/B

where tf is the foil thickness; and

(IV-A-64)
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_-eT3B

k = 2_ (IV-A-65)

so that the characteristic time may be expressed as

2n 2

_- Q'eT3 _fcftf

where T is some characteristic temperature, say that of the outer insu-

lation foil, T . For pure aluminum foils with TS = 300°K, e = 0.04,
tf = 0.001 inc_, we have, approximately,

2

"C = n hours (IV-A-66)

T 3This estimate is undoubtedly rough, since k varies as within the in-
sulation.

8. Comments Regarding the Location of Multila_er Insula_£ox_

In the present report as in other works, multilayer insulation is

considered as being applied directly on a cryogenic tank, implying that

that location is the best. Such may not be the case in a shrouded tank°

An alternative location is on the inside of the shroud, as illustrated

in Figure IV-A-12.

Placing the insulation inside the shroud and away from tanks, with

the tanks left bare, is not expected to decrease the heat flow through

the insulation blanket. However, it does offer several advantages:

a. Simplicity

Manhole covers and other protuberances that must remain accessible

on the launch pad need not be covered with foils, eliminating the

necessity for complex joints in insulation.

b. Ground-hold

If the shroud is made reasonably (not absolutely) gas-tight, the

volume between tank and shroud can be filled with helium slightly above

one atmosphere, with a controlled slow leak to the atmosphere, to pre-

vent condensation of air components on the tank. It is possible that

some amount of insulation (e.g., foams) will be required at the shroud

to prevent condensation there.
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c. Ascent

With a gas-tight shroud, ascent decompression can be controlled

without an excessive amount of perforation in the foils (see chapter

IV-A-1 and Appendix C_.

d. Venting During Space Storage

Any leaks through the cryogenic tank walls can be vented to space

without going through the insulation and degrading its performance°

Of course, the effect of foil outgassing remains.

e. Payload Factor Improvement

It is possible to jettison all insulation and all structure no longer

needed, just prior to the terminal maneuver in which the stored pro-

pellant is to be used. It is known (9) that such a procedure leads to

important improvements in payload factor.

f. Others

Other advantages are: better control over contact stresses between

foils due to differential thermal contraction; a decrease in heat flow

through insulation attachments and other internal penetrations because

of the smaller temperature difference. (The innermost foil on the shroud

would be at about 90°K.)

One problem associated with insulating inside the shroud is due to

aerodynamic heating during ascent from earth. This problem is also

present when the insulation is on the tank° Foam or other types of

insulation placed just inside the shroud to prevent condensation can

be designed for protection against aerodynamic heating as well (and

jettisoned along with shroud and MLI prior to terminal maneuver if

desired).
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IV-B. MULTILAYER INSULATION AS A UNIFORM

BLANKET OVER A TANK

We analyze in this section the behavior of insulation independently

of major penetrations such as pipes and structural supports, but not

independently of penetrations internal to the insulation, which affect

the behavior of the latter in its detail, and can be considered to form

part of it. The reason for separating out the major penetrations has

been suggested in preceding sections (ViZo, Section III) and anticipates

Section IV-C, where it is shown that such major penetrations can be

effectively decoupled from the insulation; when this is done, as it

should be, these two major components can be analyzed separately to

determine the heat-inleakage contribution of each, for a subsequent

superposition.

Before proceeding to the general case of arbitrary distributions of

incident power on the tank insulation, the simple case of uniform in-

cident power, which is of some importance, will first be dealt with.

i. Uniform Incident Power--Any Foil System

Uniform incident thermal radiation flux intensity is more likely

to occur in the presence of a shroud surrounding the tank. As previously

suggested, such a shroud (i) will be necessary for protection against

ascent aerodynamic heating and micrometeoroids in space; (ii) can easily

be incorporated as part of the structure (from which the tanks can be

supported); and (iii) permits considering the "insulated-shroud "

alternative (see Section IV-A-8), which offers many advantages in the

design, application, and behavior of MLI systems. A shroud, even though

it receives a non-uniform space radiation flux over its outer surface,

will tend, by multiple reflections within the tank-shroud space and by

conduction along both the MLI foils and the shroud itself, to have an

inner surface (ioeo, facing the tank), at uniform radiosity; this will

result in a more uniform flux incident on the tank insulation (see

Appendix A). Another cause that tends to render the flux incident on

the tank more uniform is the spinning or tumbling of a vehicle. It is

probable that the incident power will not be perfectly uniform; however,

uniformity may be assumed with acceptable accuracy in some circumstances

represented by the above examples.

The calculation of the total heat flow to a tank through a uniformly

irradiated insulation blanket is simple° In the case of pure radiation

foils, use is made of the concepts of T and _developed in IV-A. Since

Tati I uniform (if the ratio _o/eo is uaiform over the outer foil)the
heat flow will be

Q = Atank _ _ o I (IV-B-l)
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When there is conductive as well as radiative heat flow across the

foils, use can be made of an experimentally determined thermal conduc-

tance k_

(Q/A) experimental

kj. _. Ts _ Tliq _ (IV-B-2)

and the total heat flow is given by

Q = Atank k_ (Ts - Tliq) (IV-B-3)

where, for the usual values of _,

T
a

Ts - 1/4 = Ta (IV-B-4)
(I

2. Non-Uniform Incident Power--Pure Radiating Foils

a. Single Relationship Giving the Total Heat Flow

The analysis presented in Appendix E brings to light a most useful

relationship (theorem) for the case of pure radiating foils in an in-

cident flux environment of arbitrary distribution: the heat flow

through the foils and into the cryogenic tank is independent of thermal

conduction in the plane of the foils. That analysis assumes that there

is no net radiative parallel flow in the spaces between foils. As

mentioned in the opening statements of Section IV, this assumption is

equivalent to another one, that the radiative view factor between adj-

acent foils is unity. For closely-spaced foils as contemplated for

application in MLI for cryogenic space tanks, the assumption is very

nearly correct. Calculations based on this assumption lead to pre-

dictions of detailed temperature distributions that are verified satis-

factorily by experiment (see Section IV-F). Note again that the double

assumption regarding MLI, i.e., only radiation normal, and only con-

duction parallel, implies a carefully designed and applied insulation

system.

Based on the independence of the total heat flow on k. , that heat

flow can be calculated simply according to the relationships given in

Appendix E, or by assuming that kit is either zero or infinite; the
resulting total heat flow will be the same.
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b. Calculation of the Temperature

Distribution Within the Foils

The decoupling of thermal shorts, to be discussed in IV-C, does

not eliminate the heat leak around the short entirely, though it

renders the heat flow through the insulation and the short independent

of one another. One part that remains dependent on the MLI tempera-

ture distribution is the heat flowing from the foils into the inter-

mediate insulation employed to effect the decouplingo This part may

have some importance, in which case it will be necessary to evaluate

it; for this purpose, the temperature distribution in the locality

of the short must be known. Usually this requires a calculation of

the entire temperature field within the MLI.

The need for calculating the temperature field may also arise

in the evaluation of heat flow through certain small internal pene-

trations which, although they do not interfere seriously with the

assumption of pure radiation foils (and, therefore, allow the use of

the theorem of Appendix E), still provide a contribution to the heat
flow that must be evaluated° The evaluation of such heat leaks de-

pends on first-power temperature differences rather than on fourth-

power, and thus requires some knowledge of the temperature field.

The calculation of the temperature distribution within MLI in the

general case will be discussed in Section IV-E. In addition, if cer-

tain scaling laws are obeyed (see Section IV-D), the temperature dis-

tribution within pure radiating foils around a tank can be deduced

from the known (by test or calculation) distribution on another,

geometrically similar tank in a geometrically similar radiation environ-

ment. Two simplifying conditions can occur, however, that may permit

of a rapid calculation.

The distance for the decay of a perturbation was given as

B_-/_ in chapter IV-A-4. The ratio between this distance and a

representative tank dimension D, can be used as a criterion in two

extreme cases°

When B_ k, /k L /DTpl, then for the purpose of calculating

heat flow through penetrations, the foils may be taken to be isothermal.

In such a case, a heat balance between the incident and re-radiated

powers suffices to establish the value of the (isothermal)outer foil

= T . This value is used as the warm-end temperaturetemperature Ts a
of the penetrations or decouplers.

When B f ks_ /k_ /D _cl, the foils may be assumed not to conduct

in their own plane, and the value of T at a point is established froms
a heat balance between the local incident and local re-radiated powers

at that point° In such a case, the calculation of the warm-end tem-

peratures for the penetrations depends on a knowledge of the distribution
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of incident power, which is a more demanding requirement than when

B_-k_-, Tk t _71. Nevertheless, for this case also, there is no need to

Dcalculate the entire temperature field within the MLI.

3. Non-Uniform Incident Power--Foils With Normal Conduction

If the conductive heat flow normal to foils cannot be neglected

nor separated from the radiative heat flow, the problem of determining

either the total heat flow or the temperature distribution becomes, in

principle, much more difficult to solve° Usually in such cases (e.g.,

compressed foils) the "thermal conductance" of the conductive component

is unknown, and the ratio between the local heat flux and the local

temperature gradient (i.e., the "local k£ ") is an unknown function of
the local temperature within the foils.

If knowledge of the temperature distribution in such a case is cri-

tical, it would be best to design the system once more, for reliance

cannot be had on calculations except within a large error. Moreover,

tests can have little meaning, for controlled tests under realistic

conditions imply a knowledge and control over the operational conditions,

which is contrary to the situation postulated°
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IV-C. PENETRATIONS AND DISCONTINUITIES

IN MULTILAYER INSULATION

Io Basic Effect of a Penetration or a Discontinuity

Suppose there is a "break" or discontinuity in the multifoil insu-

lation. The immediate result is that, whereas with continuous layers

the energy was forced to flow from layer to layer by radiation (and

conduction), there is now in the gap between adjacent ends of foils a

path for radiation to bypass one or more layers. This radiation can be

emitted from the uppermost layer that may not be broken, or from the

space between layers. Consequently, more heat flows toward the tank

wall than if there were no discontinuity° An example of this class of

problem is analyzed in Reference I0°

A similar effect occurs if a piece of material penetrates through

the insulation° The edge of the multifoil insulation will be in some

thermal contact with that piece of material. Additional heat can flow

to the tank by radiation from upper multifoil layers toward the tank,

with partial reflection from the piece of material toward the tank wall,

and partial absorption by the piece, with re-emission and conduction

toward the tank° If the ends of the foil are in mechanical contact with

the piece, and if, as is usual, the piece is of thermal conductivity

greater than k_, there will be a heat inleakage by conduction, from the

ends of the foils into the piece, as well as radiation from the space

between foils absorbed by the piece, and conducted into the tank.

It is thus clear that any penetration in the multifoil insulation

leads to an increase in heat leak into the tank over that which would

exist if the penetration and foils were thermally decoupled. The problem

is to assess the importance of such leaks and minimize the important

ones. An appreciation of the mechanism and general behavior of penetra-

tions is useful for this purpose.

The sketch at the top of Figure IV-C-I illustrates the path followed

by the heat leak added due to a penetration, as just now explained. The

sketch at the bottom of the same figure represents the resistances to

this additional heat flow along its path: (i) from the environment to

the outer foil, (ii) through and along the foils and (iii) along the pene-

tration. The heat actually flows in a complex pattern, so that the

representation in terms of three resistances is not exact; however, the

concept is useful for delineating between various penetrations. In prac-

tical cases, the resistance R_ is very low; equivalently, the outer foil

is very nearly at the adiabatic wall temperature T^ (see Section IV-A )

over most of its surface° Consequently, the heat _eak may be said to be

controlled by two resistances: R,and Rp. One may immediately classify a

penetration within three categories, according as the ratio R,,/Rp is
small, near unity or large. In anticipation of Chapter IV-C-3, penetrations

so classified are defined as weak, strong, or absolute thermal shorts,

respectively.
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Suppose we now fix the value of R,, that is, we consider insulation

consisting of a given number of foils of specified type. Let us also

fix the geometry of the penetration (e.g., the diameter of a pipe, pin,

thread, etc.), and vary the thermal conductivity, k, of the penetration

material. The resulting variation in the heat leak is illustrated in

Figure IV-C-2. At low values of kA/B, (where A is the penetration cross-

section, B is the thickness of insulation), the heat leak varies directly

as kA/B, which is the conductance of the penetration, I/R_. Eventually,

at high values of kA/B (low values of Rp), the resistance'R, controls,
and the heat leak reaches an asymptotic value° At the same time, the

temperature drop across the penetration, which is nearly constant when

Rp controls, decreases to zero as kA/B attains large values (as Rp
vanishes).

A measure of the ratio R,/Rp can be found in terms of the foil
and penetration properties.

(zv-c-l)

where w is the width of the penetration (e.g., pipe wall thickness,

width of straight strip, etc.). This parameter will appear several

times in subsequent analyses.

2. Radiative Heat Leaks Through a Gap

Radiative heat leaks through various discontinuities in _Itilayer
insulation have been treated in a previous topical report ( ). We

present here the important results for a gap in the insulation. The

geometry and nomenclature describing such a gap are shown in Figure

IV-C-3. The important variable is the gap width, _.

The resulting heat leak into a tank is given graphically in Figure
IV-C-4, as a function of _ /B, the ratio of gap width to insulation

thickness. The heat leak is represented by an effective width'_f_'r°fg_a_0insulating panel that would transmit the same flux as does the

the same temperatures° An example will illustrate the use of the graph.

We consider a cylindrical tank i0 feet long, I0 feet in diameter,

with flat ends and insulated with 80 layers of metal foil having an

emissivity of 0.04 and total thickness of one inch. If the insulation

is applied in four sections, namely, two end disks, and two halves of

a cylindrical shell, the total length of seam is 80 feet. The total

area of the tank surface is 450 ft _. The shielding factor n_$- I_
is about 4000° J

If we allow a gap width at the seams of_= 0oi inch, then g/B = 0oi,

and from the upper curve in Figure IV-C-4, we find that _eff/B = 102o
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Therefore,g eff = 102 inches = 8.5 feet, and the effective area of the
seams is 8.5 ft x 80 ft = 680 ft 2. Since the total area of the tank is

450 ft 2, the seams cause an additional heat input of 150%.

3. Gradation of Thermal Shorts

The additional energy that flows to the tank through a penetration

originates from the radiation environment. Since, as we have seen in

Section IV-A, the net heat input arises from a difference Ta 4 - Ts 4, then

where the heat inleakage is increased locally, that difference must in-

crease° Therefore, the outer foil temperature Ts must be depressed in

the neighborhood of a penetration. This depression, z_T, will be largest

right at the penetration. This maximum depression is defined as_Tmax;

an illustration is given in Figure IV-C-5o In a given insulation and

for a given geometry, _Tma x depends on the amount of heat inleakage,
and, therefore, on the conductance of the penetration. If the latter is

high, so will be the depression. In a certain range of conductances,

_Tma x will be small enough so that the calculation of the additional
conductive or radiative heat leak can be made assuming that the full

temperature gradient of the undisturbed insulation is applied across

the conductance, without serious error.

The calculation of the heat flow through a penetration in MLI is

a complicated affair in the general case, involving both radiation and

conduction, with some uncertainties regarding thermal contact resistance.

Therefore, it will be extremely useful to be able to recognize those

cases where the complication can be avoided° As suggested in the

previous paragraph, it can be avoided when_Tma x is small, for then a

good approximation to the heat leak through the penetration is simply

QPENETRATION _ kA (IV-C-2)B (Ts - Tliq)

where T s is the outer foil temperature in the undisturbed insulation.

The error in (Ts - Tli q) is_Tma x, and it is on the conservative side.

Actually, Ts can be replaced by Ta since we have seen in Section IV-A

that Ta - Ts is very small in undisturbed insulation. However, in order

to recognize that the simplified equation (IV-C-2) can be applied for a

given penetration, we still need to know what is the value of_Tma x pro-

duced by that penetration. This requires a relation that can only be

obtained from analysis.

The linearized analysis of Appendix D is of aid in this respect.

In that appendix, there are two linearizations. The first is based on the

assumption that k I is uniform at some mean value; it was useful in deter-

mining decay distances for perturbations, and it can be used here in

obtaining a good estimate of_Tma x. The second is a linearization in

the boundary condition at the outer foil, the latter condition being

expressed as
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(Q/A) in = const (Ta - T ) (IV-C-3)s

instead of

(Q/A) in = _- eo (Ta 4 - Ts 4) (IV-C-4)

which is the exact expression for the net heat flux into the insulation°

Now Equation (IV-C-4) can be re-written as

3(Q/A) in = 4 _6oT a (Ta - T s) (IV-C-5)

with
2 3

T T T

i (i+ s s 3-4 T--- + --_ + )
a T T

a a

(iv-c-6)

The limiting values of _ are: unity when T = T and 0.25 when T = 0.

Suppose _Tma x = 0.i T a. Then the lowest v_lue _f Ts, on the outer foil

will be 0.9 Ta, and the lowest value of _ will be 0.86. If # is main-

tained between 0.86 and unity, equation (IV-C-5) can be replaced by
(IV-C-3) with an error no greater than 14% (actually less). Maintaining

_T _0.i Ta allows this. It also allows the use of equation (IV-C-2)
withl_nXl0%.

We arbitrarily define a weak thermal short as one for which

AT max

T
a

_=0.i (iv-c-7)

A stron_ thermal short is one for which

2kTma x
0.i_ _ i

T
a

(iv-c-8)

Finally, an absolute thermal short is one for which
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/_Tmax
m

T
a

i (IV-C-9)

It will be noted that this generalized definition in no way implies

that a weak thermal short necessarily leads to a low heat leak. A thermal

short can be defined as weak or otherwise only in terms of the insulation

which it penetrates. In fact, the same penetration (of given geometry

and properties) can be a weak short and produce a high heat leak in cer-

tain insulations and be a strong one, producing a low heat leak in others.

Figure IV-C-5 shows _Tma x as varying from one insulation to another for

a given penetration. Obviously if _Tma x is large, the actual tempera-
ture drop across a given penetration will be low, giving a low heat leak.

A weak short should be thought of as one permitting a linearized

analysis and a simple heat flow calculation. The properties associated
with weak shorts will now be discussed.

4. Limits to Weak or Linear Shorts

An analysis similar to that of Appendix D was performed to analyze

the thermal behavior of the general cylindrical penetration.

Figure IV-C-6 shows maxima of the parameter wkj/B for which penetra-

tions of various radii remain in the weak thermal short category, as defined

by Equation (IV-C-7). The curves have n, the number of foils, as para-

meter, and are for penetrations in two-mil aluminum foils. Figure

IV-C-7 gives the same results for penetrations in aluminized Mylar foils.

The quantity w, representing penetration width, or cylinder wall

thickness, has of course a physical maximum in the latter case. This

maximum is ro/2 , representing a full cylinder. In fact, for full cylinders,

in both figures the parameter wkl/B can be replaced by_ro/2B.

In both figures, the curves tend to asymptotic values of wkl/B as r
o

becomes large. These asymptotic values are therefore applicable to

straight strips, such as might be used on the edges of panels of insula-

tion. The results for such straight strips have been interpreted in

terms of various penetration materials, for two thickness of each of

the two types of insulation, in Figure IV-C-8.

5. Stron$ or Non-Linear Shorts

The analysis of the general cylindrical short, without linearizations,

presented in Appendix F, reveals the dependence of the added heat flow

due to the penetration on three parameters: _'_ and vo. The determina-
tion of this dependence is left to future work. However, it is possible
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to locate, in this significant group of parameters, the limits between

weak and strong thermal shorts. The limits are shown in Figure IV-C-9.

The curves presented there are applicable to any type of foil, in any

number (down to about five), and for penetration of all radii, thermal

conductivities and wall thicknesses.

The three parameters _and v are defined in Appendix F. Witho.
reference to the resistance concept zntroduced in Chapter IV-C-l,

and _can be shown to have the following significance:

= Rij/_ (IV-C-10)

K..= RE/Ri, (IV-C-II)

It is seen from Figure IV-C-9 that for the usual values (0.0001 to

0.001), Ms.does not have a large influence on the limiting values of_
for weak shorts. The reason is that at such low values, the "environ-

mental resistance"R E cannot control the heat flow.

v is a geometrical parameter, which can be shown to have the follow-
o

ing significance:

v = r /XD (IV-C-12)o o ecay

Since in practical cases X. is the order of inches, and even several

feet, v o will usually be s_Yfor insulation attachments (pins, threads,

etc.) and of the order of unity for pipes. For straight strips (e.g.,

edges of insulation panels), v becomes infinite and loses its influenceo
(this is not indicated in Figure IV-C-9).

6. Design of Thermal Shorts When a Choice is Possible

We consider a given insulation: fixed number and type of foils,

fixed insulation thickness B. Suppose that penetrations of a given

material must be introduced to fulfill a certain function. The function

may dictate the number of such penetrations, or their total cross-

sectional area, or the radius of each, or the material. If a choice

is left as to the radius and wall thickness, then it may be possible

to choose a combination of these quantities so as to minimize the heat

leak.

As an example, suppose that the total cross-sectional area of these

penetrations is fixed. That is
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n 2_r w (i- w_____) (IV-C-13)n2_r w s A a constant
p o zr p o eq toto

where n , _r are the number, wall thickness, and radius of penetration
_O

respectively, and Ato t is the total cross-section of all the penetra-

tionso Such a condition might apply, for instance, to insulation attach-

ments required to support the foils under launch acceleration° In this

situation, the three variables are at the disposal of the designer,

within a certain reasonable range. Since the thickness, B, of insula-

tion and the thermal conductivity k0of the short are given, we can
write

weqk I ATo t k l

B 2_ n rB
p o

cons rant

n r (IV-C- 14)
p o

Corresponding to the insulation in question there will be one curve

of the type shown in Figures IV-C-6 and 7, giving the maximum value of

wk_/B for weak shorts as a function of ro. On the same graph, curves
representing equation (IV-C-14) at fixed n_ can also be drawn; these

O

will be straight lines at a negative slope of 45 , and will be higher

on the graph the smaller the value of npo

Consider the highest of such lines, corresponding to the minimum

practicable number of penetrations. If it has points above the curve

of maximum wkl/B , it is possible to design the penetrations as strong

shorts. For these, _Tma x = X Ta> 0.i Ta, so that

(_T)penetrations = T a-_Tma x- Tli q

= (I - X) Ta - Tli q

or

_'0.9 Ta - TIi q (IV-C-15)

(_T)penetrations < (_ T)weak short

(a_reng shor_)

(IV-C- 16)
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The heat flow through all the penetrations will be

AToTk_

Qpen - B (_T) penetrations

= constant (_T)penetration s

< constant (_T)wea k shorts (IV-C-17)

or

Qpen < Qweak shorts (IV-C-18)

The further the point is above the curve of maximum wk,/B, the smaller

will be Qpen" Since we are considering points on the line of lowest

practicable n , the furthest point will be attained by varying r .

However, ther_ will be practical limits to that variable also. o

7. Decoupling of Thermal Shorts

When penetrations in thermal contact with the foil edges produce

unacceptable heat leaks, it is necessary to interrupt that thermal

contact. Mere separation of the penetration from the foil edges may

not be satisfactory, for it introduces a gap that allows radiative heat

leaks to the tank (see Chapter IV-C-3). Gaps around the perimeter of

a penetration of modest radius may be tolerable (an example would be a

small vent pipe (i0)), provided there is adequate assurance that the

gap will not widen or close unpredictably owing to distortions in the

insulation blanket. Such distortions could be caused by thermal con-

traction during filling, by loading during launch acceleration, or by

pressure differences within foils during ascent decompression.

There are cases where a gap is intolerable. Some examples are:

(i) penetrations consisting of long straight strips, e.g., along a con-

tinuous support membrane, or along the edge of an insulation panel;

(ii) circular penetrations of large radius, e.g., around a manhole or

a transfer line; and (iii) perhaps a large number of small penetrations.

In such cases it will be necessary to close the gap with some material

of isotropic, low thermal conductivity. This procedure is illustrated

schematically in Figure IV-C-10(a). Examples of insulator materials

that appear promising are evacuated glass fiber and evacuated powder.
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Figure IV-C-10(b) represents a square section of intermediary in-

sulation at a corner, which protects the foils in one direction from

being shorted by those in the other direction. The environmental radia-

tion is incident on both outer surfaces of multilayer insulation° The

radius of the short is large (ro;P_,XDecav). If k 2 is the thermal con-
ductivity of the intermediary insulation,_the heat leak per unit length

normal to the drawing can be shown to be

Qcorner = k2 (Ta - Tliq) (IV-C-19)

The dimensions of the square do not enter into the result. For T a = 280°K,

Tli q = 20°K and k2 = 3.0 x 10 -3 Btu-in (evacuated powder), the heat
ft2-hr-°R

leak for one foot of such insulation will be 0o112 Bt---V-uo
hr

Figure IV-C-10(c) shows a square section of intermediary insula-

tion, the upper side of which is adiabatic. This represents the joint

between the tank wall and a large pipe or between the tank wall and

support in the form of a sheet of metal, with negligible heat flow from

the warm end to which these elements would presumably be connected. For

this case, the heat leak per unit length can be shown to be

Qadiabatic = 0.74 k 2 (Ta - Tliq)

upper side

(IV-C-20)

The next case to be treated is a square section of intermediary

insulation, the upper side of which receives the same solar flux as does

the multilayer insulation. This represents a possible protection scheme

for a seam on a side of the tank exposed to direct solar radiation° The

surface absorbtivity-to-emissivity ratio on the exposed side of the inter-

mediary insulation is assumed to be the same as for the outer surface

of the insulation. This case is not shown, but would be that shown in

Figure IV-C-10(d) without the stiff shield covering the intermediary

insulation. The problem is non-linear and must be solved for each

combination of k2, _ /co and (Ta - Tliq). We have carried out the com-
putation for one suc_ combination:

k 2 = 3.0 x 10 -3 Btu-inft2_OR_hr, _o/Co = 0.2, and (Ta - Tliq) = 260°K. The

result is:

Qexposed = 0.215 Btu/ft-hr (IV-C-21)

upper side

In order to compare this result with the previous one, we write
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Qexposed

upper side

= 2°08 x 10 -3 k 2 (Ta - Tliq)

4.3 x i0-6 x 260

= 1.86 k2 (Ta - Tliq) (IV-C-22)

The last equation is for comparison with Equation (IV-C-20) only, and

cannot be applied as written except when the specific quantities kg,

etc., given above, are used. It indicates that for given values o_
the parameters, the heat flow can be more than doubled when the upper

side of the intermediary insulation is left exposed. This is the reason

for the stiff protective shield shown in Figure IV-C-10(d).

Figures IV-C-II and IV-C-12 illustrate methods of using inter-

mediary insulation for structural strips, seams and pipes. These figures

are self-explanatory. The use of thin shaped strips as suggested in

the lower sketch of Figure IV-C-II, also in Figure IV-C-12(b) can be

highly valuable in solving the complex topological problems arising when

combined thermal, structural and geometrical requirements are to be met.

These shaped strips are equivalent to the stacked stainless steel washers

discussed in Section IV-A; they are insulated from one another by a fine

powder, and in vacuum they offer a high resistance to heat flow across

adjacent strips.

The decouplers discussed so far have been square in cross-section.

The question remains how, in this cross-section, the dimension parallel

to the tank (shown as b in Figure IV-C-13) should be related to the

thickness B of the insulation. In the case where the decoupling material

has its exposed upper side shielded, as in Figure IV-C-10(d), the question

can be settled by a linear analysis. Such an analysis has been per-

formed, with the result shown in Figure IV-C-13, where the normalized

added heat flow due to the penetration is plotted against the geometrical

ratio b/B for various values of the parameter _ . The latter may be

taken to represent the conductance of the penetration. It is seen from

the figure that, no matter how high that conductance is, its effect is

no longer felt when b/B = i. Specifically, with a decoupler having a

square cross-section, the heat flow per unit length (L) depends only

on the thermal conductivity k 2 of the decoupler material and on the

temperature difference T s - Tliq° In fact, the horizontal asymptotic
line in Figure IV-C-13 may be written

Q = 0.74 k2 (Ts Tliq)

which is exactly Equation IV-C-20 when T -- T .
s a

(IV-C-23)
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The curves of Figure IV-C-13 reveal one more thing: when_L0.67,

the heat flow increases as b/B increases. Therefore, a decoupler is

useless or worse, if its thermal conductivity k 2 is such that _ is less
than 0.67. For a decoupler to be useful we must have

wk
!

k2 _ 0o67------B (IV-C-24)

8. Penetrations with Temperature-Dependent Thermal Conductivity

Over the temperature range from cryogenic to equilibrium under solar

radiation (i.e., 20 - 400°K) the thermal conductivity of most materials

changes markedly. The form of this temperature dependence is almost as

varied as are the materials. Hence, a general analysis accounting for

all possibilities is not possible. Moreover, there is the added

diversity in foil type, number, and emissivity.

To show the effect of temperature-dependent conductivity, we have

considered the case where each foil is isothermal, that is, where

B#k,/k_ /D_I, with a uniform intensity I of incident radiation over

the outer insulation foil. Thus, the temperature is a function only of

distance from the tank surface, and at a given point is the same for

the penetration and for the foil situated there. Hence, this is a uni-

dimensional problem.

We may write for the total heat flow across two adjacent foils,

including that due to the penetration:

A B-_(T 4)
O _T

+ AIk(T ) _-_ (IV-C-25)Q= 2

(7 - i)

where A and A 1 are areas shown in Figure IV-C-14 But _y = B/n; alsoO •

2/e>_l; therefore,

A _- eB _ (T4)

Q_y = o 2n + AIk(T) _ T (IV-C-26)

When the number, n, of foils is large, the differences can be replaced

by differentials

Ao _- eBd (T4)

Qdy = 2n + AIk(T ) dT (IV-C-27)
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At steady-state, the same heat Q flows across each pair of foils.

Therefore, Equation (IV-C-27) can be integrated as follows, between

the limits y = 0, B and T = Tliq, Ts:

T s

A O" 6 (Ts4 A I jQ_ o
2n -Tliq) +-_- k (T) dT

Tliq

(IV-C-28)

If k (T) is known, the last equation gives Q as a function of T s.

Another expression can be set down for Q, in terms of the incident

radiation I and the outer foil surface properties _o' Co:

4
Q=A (_I )o -B-CoTs

= Ao_-C ° (Ta 4 - Ts 4) (IV-C-29)

Here we have neglected A I as being small compared to Ao.

Equations (IV-C-28 and 29) are sufficient to determine Q, if k(T)

is known. We have considered the following form:

k = ka (T/Ta)P (IV-C-30)

For such a form, it is found that a general relationship exists between

a normalized Q and a parameter involving the quantities of interest:

where

, + f (G,p) (IV-C-31)
A _I i+_4.
o o

A I k a Ta
G -= (IV-C-32)

A B_ ° Io

When G = 0 (no penetrations), f (G, p) = 0 and Equation (IV-C-31)

becomes the usual one.

Figure IV-C-14 shows the relation for p = -I, 0 and +i, and for

particular values of T a and TliqO When G is less than 0oi,
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f Gp + i ' P - i (IV-C-33)

f = Gin (Ta/Tliq), p = -i
(IV-C-34)

When G is very large

f _ 1 (G_-) (IV-C-35)
i+_

so that Q = A W Io This last result is of very little interest, but
o o

is shown in order to complete the picture in Figure IV-C-14.
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IV-Do GENERAL SCALING RELATIONSHIPS

The heat leak through a penetration in multilayer insulation depends

on the temperature distribution and external radiation flux in the

locality of the penetration. Hence, there is a need to know that tem-

perature distribution for an accurate assessment of the total heat leak

to the tank. Fortunately, the penetrations themselves affect the tem-

perature distribution in MLI either slightly or only locally. A strong
short that has an extensive effect is by definition an intolerable one

that must be decoupled from the MLI, in other words rendered weak.

Thus, penetrations do not feed back strongly on the thermal state of

the MLI, although their behavior depends on that thermal state.

It follows that the determination of the temperature distribution

within the MLI, with or without penetrations, is desirable. The

possibility of measuring the temperatures on a thermal model of a tank

system and applying scaling laws to predict the distribution on a

geometrically similar prototype is attractive in this context. We will

now present the laws that must be obeyed in such a scaling process,

in MLI blankets with or without penetrations. First, we will consider
the MLI blanket alone.

I. Insulation Blanket

Following a development similar to that presented in Appendix F,

a steady-state heat balance equation in three orthogonal coordinates

can be written, governing the temperature within MLI, as follows:

3 D 2

/ g-e Ta_ma x _ 0 284 _ 28 <)28 0

2kt n _ u

(IV -D- I)

where

u = y/B

y = perpendicular distance from the tank surface

B = thickness of insulation

,_ = x/D, z/D

x,z = coordinates parallel to the tank surface (normal to y)

D -- a representative tank dimension

O = TITa,ma x
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4 M o Imax
T
a ,max e q-

O

I
max

= maximum external incident flux intensity

e, e ,_, k, t, n, as previously defined°
O

The coefficient of the first term can be written as:

_2 = _'6 T 3 D2 I I 2

a_max _ D (IV-D-2)

2 n2 kt XDecay

where XDecay is as defined in Appendix D with T a = Ta,max o The co-
efficient _ can also be expressed in terms of Ima x

__._. 1/4 _ o imax ktn 2

There are two boundary conditions for this problem, since the variables

and _ gird the tank and hence have no boundaries. The two conditions
are :

u = 0 : 8 = Tliq/Ta,ma x (IV-D-4)

u = i : _ _'u + e4 ea 4
(IV-D-5)

where _ is as before and

ea 4 (_,t) = (Ta/Ta,max)4 I
max

(IV-D-6)

Solutions e (u,_ ,_), for all geometrically similar tanks for

which the normalized flux distribution I/Ima x is similar, will depend

on the parameters_, _and Tliq/Ta,ma x. The solutions will be
similar for any set of tnese parameters. If, as is usual, the last

parameter, TI. /T- - is small compared with unity, the condition
llq a,max

that it be Kept constant is not a very stringent one; the other two

parameters are usually the important ones.
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The heat flow into the tank through the insulation blanket is,

from Appendix E, (neglecting Tliq 4)

QB = _ _ o _IdA (IV-D-7)

where the integral is performed over the entire tank area° Equation (IV-D-7)

can be re-arranged:

D 2 _ (I/Imax) d_ d _ (IV-D-8)
QB = _o Imax

For similar cases, I/Ima x is the same function of _ and_ ; hence, the

integral in (IV-D-8) is a constant. Therefore, we have, for similar cases:

QB = (constant)_(_o Imax D2) (IV-D-9)

provided that c has the same dependence on temperature for similar

cases (which will be true if the same foil material is used in each

case), or that e is not a function of temperature (we have seen that

little error is incurred in assuming that the latter is true). Since

is presumed constant, we may rewrite QB as:

= I D 2
QB (constant) _ o max (IV-D- i0)

The condition that the first two parameters, _and _be kept con-
stant leaves some choice in the selection of the remaining variables.

This choice will determine the scaling factor to be used in computing

QB for a particular tank from the results (test or computer) on a

similar tank of different size. In the following two examples, e and

kt are kept constant and the same foils are used.

and

ao If n/D is kept constant, then for similarity,

I must vary as I/Do max
(IV-D-II)

c° must vary as I/D (IV-D-12)

If these relationships are adhered to, QB will vary as D. Suppose that

one were interested in determining the heat flow into a cylindrical

cryogenic tank 20-ft. long, eight feet in diameter, axis at 45 ° to the
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direction of the sun and insulated with 40 layers of a certain foil.

The absorptivity, d , is 0.i (i.e., i0 per cent of the solar radiation

is absorbed) and th_ emissivity of the outer foil is 0.2. We have a

test tal_k 4-ft. in diameter, i0 feet long.

For these similarity conditions are need to use 20 layers of foil

(n/D the same in both cases), ._ = 0.2 andS= 0.4 and I is identi-
O [_X , .

cal as in the angle incident to the radiation. If QB measurea is

watts, then we would predict QB for the large tank to be 16 watts.

b. If n/D 2 is kept constant, then for similarity,

D2/3
C<o I must vary as (IV-D-13)max

and

___p_o(large tank)=

_o (test tank)

"_o (test tank )=

(large tank)
O

t ° must vary as I/D 2 (IV-D-14)

If these relationships are adhered to, QB will vary as D 8/3. Suppose

the 20-ft. tank referred to above were i_sulated with 80 layers of

foil, we coul_ still use the test tank (10-ft. diameter) with 20 layers

since now n/D- is the same in both cases. For similarity of Qo and Go,

D (large tank)) 2/3 = 22/3
( D (test tank )

0.1/22/3 = 0.063

and _ ( D (large tank) )-2 I

(test tank ) D (test tank) = _2
O

Go (test tank) = (0.2)(4) = 0.8

These are the values of _ and_ which must be used on the test

tank for similarity considerations. ° If experiments on the small tank

showed that the heat leak QB = 2 watts, then we would predict for the
large tank.

8/3
QB 2 (2) = 12 watts

2. Penetrations

We have seen that for similarity in MLI, three parameters must be

kept constant. In the case of penetrations, there are also some simi-

larity parameters. In Appendix F, a set of these has been developed

for cylindrical thermal shorts. Most shorts through MLI will be cylin-

drical, with their radius finite or infinite (straight strips). For

non-cylindrical shorts, it is possible to transform Equation (F-17) into

a new set of orthogonal coordinates, one of which is constant on the

periphery of the thermal short. Such a transformation will not alter

the significance of the parameters_,_, v and 91iq, but will change the
!

solution e (u,--,--) and the value of the _eat flow integral, which for

cylindrical coordinates is given by (F-35). Therefore, for similarity it

is still necessary and sufficient to keep the four parameters constant.
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Since one of the boundary conditions for any short is 04 = f(u) at large

distances, then f(u) must be the same for similarity; hence, the blanket

temperature distribution must also be similar. We may, thereCore, list

the requirements for similarity as follows:

Parameter to be kept constant

Insulation y, i.i, Tliq/Ta,ma xBlanket:

Penetration Vo ' r'_ ' Tliq/Ta ) _'l

Suppose we have satisfied the similarity requirements for the MLI

blanket, and we wish, in addition, to satisfy similarity for the pene-

trations. The requirement for _ is already satisfied. If we locate

the penetration at the same geometrical location (i.e., sameCand_),

then since T /T is the same function of_and _ for similar blanket
a a,max .

cases, and since Tliq/Ta,ma x is the same, wewill have, at the pene-

tration, Tliq/T a

liq/Ta _max (IV-D- 15)
T

Tliq/Ta = T /T
a a,max

(constant) f (_,_)

= constant (IV-D-16)

Comparing v (Appendix F) and _ , we see that their ratio is
0

VO

_ (rol D ) (IV-D-17)

Therefore, since _ is constant for the blanket, keeping ro/D constant

is sufficient to ensure that v o be constant. Fixing the ratio between

ro and D keeps the size of the penetration on the same scale as the

tank. Finally, the parameterS, which is particular to the penetration
and not to the blanket, must Be kept constant. Incidentally, it is

possible to keep,constant in a variety of ways. To recapitulate:

For similar MLI:

For similar shorts:

' _ ' @liq constan_

same scale as tank, similar

location on tan_ _constant.
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IV-Eo METHODS OF TEMPERATURE FIELD AND

HEAT FLOW COMPUTATIONS

Experimental results show that with care in design and application,

multilayer insulation can be made to perform as intended, namely, as

a stack of pure radiating foils° When this is so, many simplifications

can be made in the determination of the heat flow through the insulation

blanket. The presence of penetrations does not interfere seriously

with this heat flow, because the disturbances in temperature that they

cause is small. First, the average outer foil temperature is changed

by a negligible amount. Second, disturbances within the MLI are either

small (weak shorts) or localized.

On the other hand, as stated in IV-F, the heat leak through pene-

trations depends on local MLI temperatures, as well as on the local

incident flux intensity. Except in special cases (e.g., uniform internal

radiation environment), these local conditions cannot be determined

with accuracy except by solving simultaneously for both the temperature

distribution within the MLI and the incident radiosity distribution

on the outer foil. While again it is valid in many cases to simplify

the problem of calculating penetration heat leaks by some conservative

averaging process (e.g., using (T--4-)I/4 for T-as a mean outer foil

temperature), strong shorts present a more pressing computational problem,
that cannot be approached by linearization. Also, even without pene-

trations, the estimation of incident radiosity depends on conduction

parallel to foils in cases where the radiation incident on the shroud

is not fixed but depends on multiple reflections between the shroud

and some other part of a vehicle, or between the shroud and another

body such as the lunar surface.

Regardless of the usefulness, desirability or even apparent necessity

of making a full-scale computation of the temperature field within MLI,

the validity of such a computation must enter into the decision whether

or not to carry it out. Now the validity hinges very critically on our

knowledge of the detailed properties of the MLI in question.

In the case of pure radiating foils of known radiative properties,

the detailed computation will have some significances, provided the heat

flow across foils is taken to be radiative in the heat balance equations

for difference elements, either by writing down the radiative heat

transfer terms or b_ considering k_to vary with the third power of the

local absolute temperature. The assumption that k;is unifor_L, at some

mean value, is useful for screening purposes, and to clarify certain

situations, but it is not valid in the prediction of heat flow into

strong penetrations. Finally, to assume k_to be some arbitrary function

of temperature, places the analysis on dangerous grounds° The conductive

contribution to normal heat flow in MLI is due to the presence of a

gas and/or mechanical contacts between foils or between foils and spacers.
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The contact pressure, or the gas density, are extremely difficult to

predict (the designer strives to avoid them altogether) sand since the

conductive component is a strong function of these causes, analysis

will not give definitive answers.

Certain cases have been analyzed for screening purposes, and have

been presented in a topical report (ii). The analysis of reference (ii)

is based on a constant value of k_. The analytical method employed,
and described to some extent therein, is called the method of zones.

This method (13) permits the subdivision of a medium (the I_LI blanket)

into a smaller number of larger elements for a given accuracy.

An analysis for the more significant case of pure radiating foils

(k_T 3) has been made for special cases (see Section IV-F). When the
number of foils in the insulation is very small (e.g., less than 5),

it may be desirable to abandon the concept of a continuous medium, and

analyze each foil individually. Such a procedure was adopted in some

of the calculations presented in Section IV-F.
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IV-F. CORRELATION OF THEORY WITH EXPERIMENT

i. Geometrical Considerations

Figure IV-F-I shows a cross-section through the axis of the tank

used in the experimental program. It is seen that the section is

symmetrical about the mid-plane except for the support neck (which also

serves as the fill-and-vent duct). Three types of sections form the

tank: a cylindrical section girding the tank; two toroidal sections,

one above and one below the cylinder; and a spherical section at top

and at bottom. The neck is guarded in such a way that the heat input

to the tank by either conduction along the neck or radiation through

the duct is made very small. The guard is essentially a station which

is kept at the temperature of the liquid cryogen so that whatever con-

duction occurs is due to a difference in temperature of a degree Kelvin

at most between the guard point and the point joining the neck and the

tank. The radiation which arrives from the warm end of the neck is

absorbed by a series of baffles which are at the guard temperature,
so that the interior of the tank sees cold baffle surfaces. The radia-

tion arriving at the baffles is conducted to the guard liquid.

a. Boundary Conditions

The tank has been constructed of copper of sufficient thickness to

ensure that there be negligible gradients in temperature parallel to

the tank wall from the bottom to the top, whatever the level of the

liquid. Therefore, the tank-surface-side of any insulation may be con-

sidered to be at the liquid cryogen temperature. If the edge of the

insulation adjacent to the neck surface is carefully protected, then

at that edge the boundary condition may be imposed that the gradient

in temperature parallel to the foils is zero. At the bottom of the

tank, provision has been made for the insertion of various penetra-

tions, that is, pipes, pins, etc., so that the boundary condition there

would depend on what the penetration is. The remaining surface bounding

the insulation is the outer foil and it is exposed to the radiation

from sources consisting of baffles through which liquid is circulated.

Referring again to Figure IV-F-I, baffles i and 2 are kept at

one controllable temperature while baffle 3 can be kept at a different

controllable temperature. Of course, liquid at the same temperature

may be circulated in all baffles at the same time in a given test.

Nevertheless, it is possible to expose different parts of the tank to

different environmental radiation fluxes. The two sources are separated

by a lip (A in Figure IV-F-l). The closer the edge of the lip to the
outer surface of the insulation the more closely the radiation environ-

ment may be considered to be changing abruptly. In practice, the

separation will not be zero so that the insulation outer foil sees a

gradually changing flux intensity. Note that this intensity distri-

bution will in all cases be symmetrical about the axis of the tank.
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b. Case of Axial Symmetry

If there is no penetration or if the penetration is circular in

nature and concentric with the bottom central point of the tank, then

the boundary conditions are completely symmetrical about that axis and

the resulting temperature distribution will also be symmetrical.

Under the conditions of axial symmetry, the temperature and other

thermal effects may be considered as varying along a gore of the in-

sulation as shown in Figure IV-F-2, but to remain the same for each

gore, so that only one need be considered. If the gore is developed and

laid on a flat surface as suggested by Figure IV-F-2, the thermal

problem then becomes one-dimensional, there being no gradients perpen-

dicular to the main direction along the strip.

2. Interpretation of Tests on a Uniform Blanket of Multilayer
Insulation in a Uniform Radiation Environment

An experiment was carried out with the tank insulated with five

layers of multilayer insulation. Two types of foils were tested:

i) two-mil aluminum and 2) aluminized Mylar. There was no penetration

on the bottom of the tank and the environmental flux was controlled

and made uniform; that is, liquid at the same temperature was circulated

in all baffles. Thermocouples were placed at various locations, and

since these thermocouples indicated no temperature gradients parallel

to the foils, even near the support neck (no heat flow to or from the

neck via the insulation), the resulting total heat input as deduced

from the boil-off rate could be divided by the entire tank surface to

determine a relevant average normal flux through the insulation.

The flux calculated in this manner agrees reasonably well with that

predicted by considering that only radiation heat transfer occurs

normal to the foil, and using published values for the emissivity of

the aluminum used for the tests. Most authors agree that the emissivity

of aluminum in the infrared is in the range 0.02 to 0.04.

Reynolds et al (8) show a curve giving values of 0.02 at 77°K

and 0.028 at 300OK. Using the latter value one predicts a flux (in

Btu/hr-ft 2) of 0.41 through five foils of aluminum on a liquid nitrogen

tank in a 300°K environment. The flux measured at Arthur D. Little,

Inc., was 0.375 - 0.42. To predict the heat flux through aluminized

Mylar, account must be taken of the fact that the uncoated side of the

Mylar has an emissivity close to unity in the infrared. The predicted

heat flux through five foils is double that for pure aluminum foils,

namely, 0.82; the flux measured at Arthur D. Little, Inc., is 1.02.

In applying the foils, very great care had been taken to minimize

mechanical contact pressure between adjacent layers and the spacer

material. Also the chamber pressure was kept below 10 -5 torr so that

gaseous conduction across the foils could be neglected. A thermocouple
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at each of the foils at a particular location on the surface of the

tank indicated a linear variation in the fourth power of the absolute

temperature at that location. This observation, together with the

absence of gradients on the surface of the outer layer, and with the

values of heat flux obtained, vindicates the contention that radiation

was the sole mode of heat transfer normal to the insulation.

The results show that the theoretical performance of multilayer

insulation can be achieved in practice. They also indicate that the

concept of an average conductivity must be very carefully applied in

detailed analyses of multilayer insulation. If the effects of shorts

are to be screened using an average uniform thermal conductivity normal

to the foils, the results will be of a qualitative nature and will

represent facts in the large rather than in detail. Another important

conclusion is that equations governing the thermal behavior of the

foils can be written with confidence.

3. Variation in Incident Flux

Having established the radiative nature of heat transfer across

the insulation, it is now possible to use this as a basis for predicting

by calculations the behavior of multilayer insulation, in a given set

of circumstances. A test, to be called the "hot-cold" test, was carried

out with five layers of aluminized Mylar applied on the test tank, but

with the upper baffles at room temperature and the lower baffles at

liquid nitrogen temperature. In this case the radiation environment

changes at the mid-plane of the test tank. As previously stated, the

physical arrangement employed to produce a discontinuous surface

distribution of flux intensity consists of a baffle in the form of a

horizontal metal annulus (lip) that girds the tank at the mid-plane and

prevents radiation from sources above this plane from reaching those

portions of the outer foil surface situated below the plane, and vice
versa. The closer the fit between the lip and the foils the more

closely does the flux distribution approach a step function.

In actual practice the separation between the lip and the foils

is not zero and the flux distribution changes over smoothly rather

than abruptly. The actual distribution can be described by the

formula:

where

Q(x) - _
2

w I

x/a )
Th 4 (i + V I + (x/a)2

4 x/a

+T c (i - VI + (x/a) 2 )

(IV-F-I)
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Th=

T =
C

X ----

a ---

the Stefan-Boltzmann constant,

the temperature of the warm baffle,

the temperature of the cold baffle,

the height above the mid-plane where the annulus

lies, positive or negative, depending on whether

the point considered is above or below that plane,

respectively,

the spacing between the inner edge of the annulus

and the outer foil surface°

This relationship is shown in Figure IV-F-3. For the case where the

warm baffle is at temperature 300°K and the cold baffle is at 77°K

the transition occurs over a range in x/a of about 4, that is,

from x/a = -2 to x/a = +2. Beyond those points the outer surface of

the insulation receives incident flux very nearly equal to that from

the local baffle° The transition thus occurs over the distance 4a.

a. Calculations Based on Radiative Heat

Transfer Normal to the Layers

Because it is important to confirm once more that the radiative

properties alone dictate normal heat transfer, and also to determine

the actual effect of parallel conduction, an analysis under the test

conditions just described was carried out with an electronic computer.

In the present case the equation which describes the behavior of

each of the five layers is as follows:

d2T.

k t _2 + _2 (T4i_l + T4i+l -2T4i ) -- 0 (IV-F-2)
d x

where

k

t =

X ----

E =

T. =
l

the thermal conductivity of the foil,

the thickness of the foil,

distance along the foil, (zero at the lip),

emissivity of the foil,

the temperature of the ith foil,
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Ti_ I and Ti+ I are the temperatures of adjacent foils

opposite the same point on the tank wall.

Equation IV-F-2 applies to the intermediate foils, that is to foils

that are surrounded by other foils. For the first and fifth foils, that

is the outer foil and that which is adjacent to the tank wall, boundary

conditions must be imposed° For the outer foil the following equation

applies:

d2Tl O-e (T42 T41 ) T41 = 0
k t----_+-_- - + _o Q(x ) -cre °

d x
(IV-F-3)

For the innermost foil the following equation applies:

d2T5 _e

k t _ + -_ (T44 - T45 ) +
d x

_- (774-T54 )

! +!_i
6 i 6 t

-- 0 (IV-F-4)

The foils are numbered beginning from i at the outermost foil and end-

ing at five at the innermost foil.

o

6

o

Q (x) --

6. ----
l

6t --

the absorptivity of the outermost foil for

the incident radiation,

the emissivity of the outer surface of the outer-

most foil,

the function defined in Equation (IV-F-l),

the emissivity of that side of the innermost

foil facing the tank wall,

the emissivity of the tank wall. In our case

it is very close to unity.

In our case, 6 is very nearly equal to _ and is equal to the

emissivity of the aYuminum of the foils. The _unction Q (x) depends

on the value of a. This was measured to be 1.25 inches.

It was anticipated that the effect of the change in environmental

flux should not be felt at distances of more than a few inches from

the mid-plane of the tank. (See Chapter IV-A-3b for an estimate of

the decay distance in the case of aluminized Mylar.) Therefore, it
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was decided to limit the region of interest along the gore strip of

Figure IV-F-2 to region b c d e f, eighteen inches long, along which

the width w(x) does not vary appreciably° Thus, only the plane problem

need be dealt with. The validity of this procedure is, of course,

subject to verification with the results.

At the toroidal sections, the tank surface curves away from the

vertical and does not view the radiation arriving through the gap at

the lip. Account was taken of this fact by truncating Q (x) at the

beginning and end of the cylindrical sections (points c and e in

Figure IV-F-2).

The distribution of the temperature of each of the five foils was

calculated using equations of the types (IV-F-2, -3, -4). The result

for the outer foil is shown in Figure IV-F-4. The temperature distri-

bution of the outer foil was also measured with thermocouples and is

also shown in Figure IV-F-4. The agreement between predicted and measured

values is quite remarkable, but not so surprising as it might at first

appear. The explanation is as follows.

Any point on the outer surface of the outermost foil receives

thermal radiation at a flux intensity that is determined by the geometry,

emissivity and temperature distribution of the bodies viewed by the

point. But that incident radiation may be thought of as being emitted

by a black body completely viewed by the point and held at some equi-

valent temperature T e. Now in the present case, since the distribution

of incident flux intensity is known (viz., Q (x), Figure IV-F-3), it

is possible to determine a distribution of equivalent temperatures for

radiation T e (x).

4
O" T (x) = Q (x) (IV-F-5)

e

For the baffle temperatures actually prevailing in the tests in

question, Q (x) can be computed according to Equation (IV-F-I) and

T e (x) from Equation IV-F-5. This was done and is shown in Figure
IV-F-4o

We see immediately the similarity between T e (x) on the one hand

and the theoretical and experimental results on the other hand. It

is noted that the outer foil adopts a temperature distribution that

follows T e (x) closely (but not exactly since a net heat flow implies

a temperature difference), and this is also predicted by calculation.

Conduction parallel to the foils does not appear to have distorted the

temperature distribution appreciably except at the edges of the tran-

sition, i.e., at some distance on both sides of the lip.

Thus, in this case (aluminized Mylar) the distance over which the

change in flux occurs is greater than that necessary for the foils

to adapt to the change° We saw previously that most of the change occurs

IV-81

_rthur _l)_.ittIe.Bnr.



11

4
I
i

I
tn

!

'-_>

E E
O0

q_

c_

D- © cO

©

CO

E
cD

U

,.-.

I I I I

6
z
_q
¢P

. ,..._
©

I °
I

N
v

©

©

I J

()Io) 'aanleaadtua_L

O

oO

-g
_D

,g=
tO

v

o4 O
°_.,_

O
O

.,.._

O

O

_D
Ca

i

i

i

_d
a:

.<
_d
z

o

o_

<

z_

b_

_z
<

m_

z

<

m _
_m

I

I

r_

IV-82

.:lrthur _'l._.ittle, ihm



over a distance 4a, or five inches° The foils adapt to a change over

a distance that is shorter than five inches. We have calculated this

distance in the case of an abrupt change in flux (a = 0) over five

foils; the distance of adaptation is an inch or so. The distribution

in temperature associated with the latter calculation will not be

shown because a more significant curve of the same type, presented

hereafter (see IV-F-4 Copper Penetration) shows the same distance

of adaptation.

b. Calculations Based on Average Values of

the Conductivities

It is interesting to compare the decay distance found above with

that formulated in a previous quarterly report on the basis of an

average conductivity perpendicular and a conductivity parallel to the

foils (k_and k_, respectively). We had that the decay distance could

be expressed as follows:

XDecay B4k"/k_ (IV-F-6)

where B is the thickness of the insulation° In the test on a uniform

blanket of five layers of aluminized Mylar in a uniform radiation

environment the average heat flux through the insulation was 0o0021

watts/in 2. This may be used to define a perpendicular conductivity

as follows:

(Q/A)B O.0021B
k/ = T - 300-77 - 9.5 x 10-6B (IV-F-7)

or, in terms of any value of n, the number of foils,

k n = n (9°5 x 10 -6 ) B = 5 x 9°5 x IO-6B
I

k n -5 watts

_B = 4.75 x I0 2_OK (IV-F-8)" in

The parallel conductivity can be defined as

n

kll = kt _ (IV-F-9)

In the case of aluminized Mylar the conductivity is that of aluminum

(k = 6 watts/in - OK approximately) since the Mylar base contributes a

very small fraction of the conduction. The thickness t to be inserted

in equation (IV-F-9) is 1 micro-inch. Therefore, kllcan be written
as:

IV-83

.2[rthur _._Little,_nr.



B -6 watts
kll n = 6 x I0 OK (IV-F-10)

Substituting Equations (IV-F-8) and (IV-F-10) into Equation (IV-F-6),

we find

XDecay 0.36 n inches

and since n is 5 in our case the decay distance is of the order of two

inches. This decay distance, of course, applies on each side of the

lip, totaling four inches. If we add the width of the transition,

4a or five inches, the total distance for the change-over in the tem-

perature of the outer foil is about 9 inches. Of course, direct

addition cannot be justified since some decay occurs simultaneously

with the transition in flux, in a non-linear fashion. Nevertheless,

it can be said that prediction based on an average conductivity gives

realistic results even in the case where heat flow normal to the foils

is almost purely radiative in nature.

c. Heat Flow

If the parallel conductivity of the Mylar insulation had been

absolutely zero and the change in heat flux had been abrupt (a = o),

the total heat flow into the tank in this test would have been exactly

one-half that for the test in which all baffles are warm (the all-warm

test). This is because the side exposed to 77°K radiation would have

received no net heat at all, the tank wall temperature on that side

being also 77°K.

Now for non-zero values of a, the total radiation incident on the

outer foil can be found by integrating, over all x, Q (x) as expressed

in Equation (IV-F-l). If we make the assumption that the toroidal

sections are outside the influence of the lip, we find that the total
radiation incident on the outer foil is the same as if a were zero.

For foils having zero parallel conductivity, the total heat flow into
the tank would still be one-half that for the all-warm test. Further-

more, it can be shown that if heat flow normal to the foils is purely

radiative, the total heat input to the tank is independent of k1_ .

Hence, we can predict that the total heat flow to the tank under

the experimental hot-cold conditions should be one-half that for the

all-warm test° This is borne out by the experimental measurement of

heat flow. Also, calculations based on the temperature distribution

T(x) shown in Figure IV-F-4 predict an increase of 0.07 Btu/hr over the

entire tank; this value can be accounted for by the possible error

in the calculations of the temperature distribution.
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4. Copper Penetration

As discussed in Section IV-C, the penetrations into multilayer

insulation can be classified in one of three categories: weak, strong,

and absolute thermal shorts. A test was carried out on the experimental

tank with five layers of aluminized Mylar into which was inserted a

disc of copper 3" in diameter° This constitutes an absolute thermal

short° Great care was taken to ensure that full contact existed between

each of the foils and the copper° This was done by using a number of

copper discs which were squeezed together and sandwiched between them

the five layers of aluminized Mylar°

The penetration was placed on the axis of the tank and on the

bottom so that again axial symmetry was ensured. In this case, radial

coordinates are used in the calculations. Also, the boundary condition

at the edge where contact is made with the absolute short is that the

temperature for each edge is 77°K. The flux over the entire tank was

due to the baffles being uniformly warm, at a temperature of 279°K.

(At the time of the analysis, however, it was assumed that the tem-

perature was to be 300°K.)

Aside from cylindrical geometry and the inner boundary conditions

just mentioned, the problem is similar to that discussed in the pre-

vious section. Equations are similar except for the fact that the

radius enters as a factor in the terms. The solution to this problem

was found by manual computation. The resulting temperature distribu-
tion for each of the foils when the baffles are at 300°K is shown in

Figure IV-F-5o

In order to compare the results of the computation with the experi-

mental results, account had to be taken of the true temperature of the

baffles, namely 279°K. With this new environmental temperature it is

possible to calculate easily the equilibrium temperature of each of the

foils at large distances from the penetration. A recomputation by

hand of T (r) of each foil for the true baffle temperature was not

deemed advisable at this time since it involves a considerable amount

of effort, and since, as we shall discuss later, the general program

which is being undertaken will permit easy computation of this case

later on. Rather, temperature distribution curves were traced in from

the known end temperatures, using the following reasoning.

Near the penetration each foil is at 77°K, and at very large dis-

tances each has its equilibrium value. The forms of the distributions
o

between those extremes may be estimated from those computed for a 300 K
• . U ,

environment. In particular, the outer loll is at 272 K at lar§e dls-
tances from the penetration_ under the new environment of 279 K. But
in the 300°K environment the second foil is at 274°K at large distances.

Hence, the equilibrium temperature of the outer foil in the true case

is very close to that of the second foil in the 300°K case. Therefore,
the distribution computed for the second foil in the 300°K case could
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L

be used to trace approximately that for the top foil in the true case.

However, in the true case the environment remains at 279°K throughout

and right up to the penetration whereas in the previous (theoretical)

case the second foil felt the environment of the outermost foil which,

of course, did not retain its equilibrium temperature throughout, but

had a temperature distribution which decreased to 77°K at the penetration.

Thus, if one were to trace the curve for the top foil from the theoretical

curve for the second foil, one would have to account for this stronger

radiation environment near the penetration. This can be done by allowing

the temperature of the first foil to rise rather more quickly near the

penetration, giving a curve resembling that of the top foil in the

300°K case. The latter is, of course, an over-correction. The approxi-

mation cannot be too far off and is, of course, subject to verification

when a result of an exact computation is obtained.

The estimated temperature distributions for the top foil and also

for the third foil (based on similar reasoning) are shown in Figure

IV-F-6o Also shown in that figure are temperature measurements for the

top foil. First, the temperature was measured at large distances (of

the order of 18 inches_ from the center of the penetration. The value
measured there was 274 K, whereas our computed equilibrium tempera-

ture was 271.8OK. The other two temperatures measured, namely at 2"

from the center and about 2-1/2" from the center, lie between the under-

corrected and the over-corrected curves. We again have a strong though

qualitative confirmation of the hypothesis that radiation alone con-

trols heat transfer normal to the foil. The experimental points are

expected to lie between the under-corrected curve and the over-corrected

curve, which they certainly do.

The total heat leak to the tank additional to that which would flow

without a penetration has also been computed for the 300°K baffle case.

The temperature distribution normal to the foils is shown both theoretically

and experimentally to have reached the equilibrium distribution at a

radius from the center of the penetration equal to 5.4". The heat flow

over the area of a circle of 5°4" radius when there is no penetration

and the environment is at 300°K, is 0.2 watt. Now with the penetration

of diameter 3 inches with a blackened surface, the heat absorbed on the

penetration itself is 2.1 watts, and the heat input through the disturbed

insulation from the penetration out to 5.4" radius is 0.3 watts, giving

a total of 2.4 watts° Subtracting from this 2.4 watts the heat flow

through the undisturbed insulation over the area of a circle 5.4" radius,

namely 0.2 watt, gives a net additional heat leak of 2°2 watts. Note that

the heat leak due to the foils being lowered in temperature below their

equilibrium value contributes only I0 percent of the additional heat
leak in this case.

The experimental heat input to the tank for this test is much

larger than could be accounted for by an error in estimating the

additional heat leak. Hence, one must await a thorough review of the

data and the experimental conditions before making comparisons between

experimental and theoretical results for this test.
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5. General Program

In the analysis of the hot-cold test for aluminized Mylar, the

region of interest was limited to the cylindrical band around the tank

plus the toroidal section. In the analysis of the copper penetration,

the region of interest was limited to a circle a few inches in radius.

There will be cases, particularly when aluminum foils are used, where

the effect of a change in environment such as existed when the lip

separated a hot from a cold region, or of a penetration as in the last

case analyzed, will spread out to distances that are not small compared

to the dimensions of the tank. In such a case the region of interest

for analysis cannot be restricted but rather the entire insulation

blanket must be considered and boundary conditions applied at the

appropriate point. In other words, the entire gore strip of Figure

IV-F-2 must be included in the analysis.

Since, moreover, various types of penetrations will be included

in future tests as well as different types of insulation or combinations

thereof, the institution of a general computer program for this particu-

lar tank will be warranted° In such a program, the environmental flux

distribution can be left as an unknown function. Account will, of course,

be taken of the spherical geometry of the insulation near the top and

bottom of the tank; the number of foils and type can be varied; and

penetrations of various types and sizes may be inserted theoretically

on the bottom of the tank provided the resulting temperature distri-

bution remains axially symmetric.
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APPENDIX A

SHROUD RADIATION TO A TANK

It is the purpose of this appendix to determine the power radiating

from a shroud inward. Once this is known, it becomes possible to

determine, or at least to estimate with good accuracy, the power incident

on the tank insulation. With that information, the heat flow into the

tank itself can be determined using the results of Appendix E for pure

radiating foils, or estimated for other types of foils°

Figure A-I illustrates a tank, II, (more precisely, the outer foil

of the MLI over a tank) and a shroud, I, that completely surrounds the

tank. Both the shroud and tank (outer foil) surfaces have been sub-

divided into a large number of elements. The inner surfaces of the

shroud elements are numbered i to n, and the outer surfaces of the tank

outer foil elements are numbered n + i to m. Thus, there are m elements

in all, that can exchange radiation with each other° Note that some

shroud elements can be viewed from other shroud elements, and similarly

for the tank.

The steady-state condition of each element may be characterized as

follows: it radiates an amount of power R i and has incident upon it an

amount of power RZi. R i may be called the radiosity of the ith element,

and RZi its "incident" radiosity.

The radiosity of an element is the sum of the power it emits and the

power it reflects° For a gray body:

4

R i = _-e i T i Ai + (i - el) RZi (A-I)

th
where e. is the emissivity of the i element, (i - Ei) its reflectivity,

i

A. its surface area and T. its absolute temperature. The incident radio-
i

s_ty of the i th element contributed by the jth element is the fraction

•. of the jth radiosity that arrives at the ith element. Therefore
Jl

RZi is the sum of all such fractions:

m

= _ _ ji Rj (A-2)RZi j =

We may, therefore, write R. as
i

A-I
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m

4 _ Rj (A-3)R.I = _ e.l T.l A.I + (I - 6i) /ji

j = i

Now consider the shroud elements. Let the shroud emissivity be

uniform and equal to eI.

m

4

R i = _-£ I Ti A i + (i - 61) _ CK'ji Rj (i = i, .oon) (A-4)

j =i

We can now add all shroud radiosities, from i = i to n, calling the sum

RI:

n

R I _ _ R. (A-5)
i= I i

eI

n
n m

_ri 4 A. + (il el) _ _ O(ji Rj

i = 1 i=l j=l

(A-6)

In order to evaluate the double summation, we make use of the radiation

balance between the two shells: shroud and tank outer foil. This

balance is very nearly achieved because of the high shielding factor

made possible with multilayer insulation (and without which cryogenics

could not be stored for appreciable periods in space). We express this

balance as follows:

n m m n

_ _ji R.j = _ _ _ji RO

i = i j = n +i i = n+l j = i

(A-7)

Equation_-7)states that the sum of all radiosity fractions from the tank

that reach the shroud equals the sum of all radiosity fractions from the

shroud that reach the tank. In other words, all the power from the tank

to the shroud equals all the power from the shroud to the tank. Note that

Equation (A-7) does not include (nor should it include) direct radiation

exchange between shroud elements or between tank elements. As suggested

above, the difference between the two sides of Equation (A-6) is of the

A-3
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order of the heat leak into the tank, which is small compared with

either side of (A-7).

We now evaluate the double summation of Equation (A-6). We first

break it up into two parts:

n In n In n n

_ _ii Rj = _ _._-ji Rj + _ _'--ji_ _ Rj

i-I j=l i=l j=n+l i=l j=l

(A-8)

The first of the two double summations on the right side of (A-8) is re-

placed by its equivalent from (A-7), giving

n In m n n n

----_ _ji Rj _ i .

i=l j=l i=n+l j-i i=l J=l

_'ji Rj

in n

= ___ _ mjiRj

i=l j-I

(A-9)

We now reverse the order of summation:

n In n In

_-r._- _ _ji Rj + _i_ (Rj _ ¢<ji )

i=l j=l j=l i=l

(A-10)

Now for any j, the summation inside brackets equals unity, since it is

the suin of all view factors froin a particular surface.

Therefore,

in

i=l

_Ji
= i (any j) (A-II)

A-4
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°

n m n

_: _ " -_ -- _ R. = _-_ R.

i=l j=l j*l

(A- 12)

But, from the definition, (A-5), the right-hand side equals R I. (This

is true independently of the change in summation index.) We can now

write Equation (A-6) as

R I = e I

n

i= i

4A. + (i R I_" Ti l - el)

or

n

4 A. (A-13)
RI = _- "3-Ti l

i= i

This important result states that the total power emitted from the

inner surface of the shroud (i.e., its total radiosity) equals the sum

of the products area x fourth power of temperature x the Stefan-Boltz-

mann constant.

We can evaluate the right-hand side of (A-13) in terms of the space

radiation environment. If we again neglect the heat flowing into the

tank, we can state that all space radiation absorbed by the outer sur-

face of the shroud must be re-emitted to space. Using the same shroud

elements as before, and considering uniform absorbtivity _o and emi-

ssivity e for the outer shroud surface, we have:
o

n n T" 4
-_ _A i = _ _e A.'_zo z__ O i i

i=l i=l

or

n
n 4 4o

A = -- _ liA i'YTi i e

i=l o i=l

(A- 14)
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Substituting into (A-13) :

n

_o

RI - c ii_ liA._ (A-15)
O

i=l

The result (A-15) is highly accurate when the shielding factor due

to the multilayer insulation is greater than 50. Usually this factor

(_50 x number of foils) is several thousands. The result is also

independent of parallel conduction within the foils or along the shroud
surface.

In order to make use of Equation (A-15) we must know what fraction

of R I directly reaches the tank outer foil. Usually this can be done

within an error of i0 to 20 percent. There may be some extreme cases

(not too likely in the usual tank system where space within the shroud

is at a premium) in which care must be exercised since warmer shroud

elements may view the tank differently from colder elements.

A simple illustrative example of such an extreme case is shown in

Figure A-2. The shroud is an infinitely long box, square in cross-

section; the "tank" is infinitely long, and very thin, represented by

a flat plate (7, 8, in Figure A-2). The shroud is irradiated uniformly

on its upper face by some external source (e.g., the sun). The "tank"

location may be varied, by varying its height x above the bottom (6)

of the shroud. We have analyzed this case, (i) assuming the sides I to

6 of the shroud to be thermally isolated from one another, but each to

be isothermal and (ii) assuming the whole shroud to be isothermal° The

"tank" is assumed isothermal. The emissivity c of the inside surfaces

of the shroud and of the two sides, 7 and 8, of the "tank" was assumed

uniform and was varied. The resulting total incident radiation on the

two "tank" surfaces is given in Table A-I.

TABLE A-I

TOTAL INCIDENT POWER ON THE "TANK"

OF FIGURE A-2 (co = i)

[Rz7 + RZS_ _o

Isolated Shroud Elements Isothermal Shroud

X _ 0 0.5 1.0 All x's

1

0.5

0oi

0.443 0.553 0.801

0.428 0.535 0.801

0.407 0°509 0.806

0. 500

0. 500

0. 500
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FIGURE A-2 A SIMPLIFIED ILLUSTRATION FOR SHROUD ANALYSIS
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From Table A-I will be seen the near-independence of the incident

power on _, and the effect of geometry° Regarding geometry, it will be

remembered that this is an extreme case.
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APPENDIX B

ANALYSIS OF INTERNAL PIPE RADIATION

i. ILLUSTRATION OF SOME FUNDAMENTALS

Consider a specific pipe, of diameter i0 inches and length 30

inches (L/D = 3), with a warm-end temperature of 300°K and a cold-end

temperature of 20°K (liquid hydrogen at normal pressure).

a. Direct Radiation from the Warm End

to the Cold End

Assuming the warm end (at 300°K) to be gray, and to emit diffusely

with an emissivity eend, it will emit 23.3 Een d watts. Of that radia-

tion, 0.6 een d watts will reach the plane of the cold end directly,

without first being reflected or re-radiated from the walls (see

Figure B-l). The cold-end direct radiation heat leak, 0.6 ten d watts,

is not of serious importance, even when eend is unity. It can be made

even smaller by decreasing the emissivity at the warm end, by increas-

ing the length of the pipe, and by increasing the reflectivity (decreas-

ing the emissivity) at the cold end.

The total amount emitted from the warm end (23.3 eend watts in the

previous example) is not, itself, small in general. (It must be remem-

bered that one watt will evaporate 175 lb. of hydrogen in i0,000 hours.)

Hence, if an appreciable portion of the warm-end emission leaks into

the cryogenic tank, the heat inleakage is indeed serious. From what

was said in Section III, this heat leak does not arise to an important

degree from direct emission to the cold end, but must occur primarily

through reflection from, re-emission at, and conduction along the walls.

b. Effect of Wall Radiation Without Conduction

Consider the case in which the wall conductivity and/or thickness

(i.e., the product kt) is very small, so that conductive flow can be

neglected. Consider the walls to be insulated so that there is no

radial heat flow. Then at steady-state any radiation incident at a

point on the wall is completely re-radiated (by reflection and/or re-

emission), regardless of the wall emissivity and reflectivity, since

there is no other issue for the incident radiation. Let this re-radia-

tion be diffuse.

The resulting pattern is illustrated in Figure B-2. Some of the

radiation from the warm end at (a) for example arrives directly at

the cold end. Some from (a) arrives on the wall at (b). Of the latter

amount, some returns to the warm end at (c), some to other parts of the

wall (which is again re-distributed), and some to the cold end. Similar

B-I
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effects occur at other parts of the wall (e.g., at d). Of the radiation

returning from the walls to the warm end, some may be reflected back,

depending on the emissivity at that end. This pattern is independent

of ewall, and depends only on eends.

If the end emissivities are both equal to unity (eends = 1.0),

the resulting net heat flow into the cold end is 6.7 watts; for eends

= 0.5, it is 4.3 watts; and for eends = 0.i, it is I.I watt. These

values are, as mentioned above, independent of the wall emissivity,

ewall" Varying ewall will change the fraction of the incident energy
that is re-emitted and the fraction reflected, but the sum of those

two fractions is always unity. Incidentally, changing the fraction re-

emitted will not change the wall temperature, but since in any event

k = 0, the conductive contribution to heat inleakage always remains

zero.

One final point in the discussion of this case: without the use

of end baffles, it will be difficult to achieve effective emissivities

at the ends very much less than 0.5.

c. Wall Radiation and Conduction Uncoupled (Cwall = O)

In the case where ewall = 0 (see Figure B-3), all radiation arriving

at a point on the wall is reflected. If this reflection is diffuse,

the same radiation pattern will exist within the pipe as for case b.,

just discussed. Hence, the radiative heat leak will have the same de-

pendence on eends as in that case. However, the conductive heat in-

leakage must be added. But, since ewall = O, no incident radiation is

absorbed; hence, the temperature distribution along the wall is not

affected by radiation. Therefore, the conductive heat leak is constant

as we vary eends. The conductive heat flow may be expressed as

300°K
t"

D t (

Qcond - L
kdT (B-l)

20°K

_T
= _ D (kmt) L (B-2)

where D is the pipe diameter, L its length, _T is the total tempera-

ture difference from end to end ( = 280°K); km is the mean thermal

conductivity of the pipe wall, and t its thickness.

The conductive heat leak must be added to the radiative heat leak

(see case b) to obtain the total heat leak. For a stainless steel pipe,

B-4
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0.030" thick, the conductive heat leak for the pipe considered is 1.8

watts. This value might perhaps be cut down by a factor of about i0,

through the use of thinner walls, other pipe materials (e.g., asbestos

fiber) and/or a longer pipe. Since ewall, although it can be made

small, cannot be made zero, a discussion of the effects of varying

(kmean t) does not have the relevance at this point that it will in the

subsequent discussion. Note, however, that conductive heat inleakages

of about 2 watts, combined with a radiative leak of the same order

(viz., case b) leads to a total leak that cannot be neglected.

2. ANALYSIS OF THE GENERAL CASE

In the general case, where neither ewall nor kmt is zero, the

absorption of radiation at the pipe walls affects the wall temperature

distribution and, hence, the conductive heat flow; on the other hand,

conduction contributes in the determination of the temperature pattern

and, hence, in the emission of radiation. It is, therefore, no longer

possible to account for radiation and conduction separately; moreover,
the interaction between these two effects is non-linear and each set

of conditions must be treated individually. However, it is possible

by the careful selection of cases, by attention to the laws of radia-

tion, and by the observation of trends, to obtain a given amount of

information with a surprisingly low number of computations.

a. Method of Treatment

First the pipe walls and ends are divided into a number of parts;

then a heat balance is carried out for each part. This heat balance

takes account of all inputs and outputs to the part, by radiation and

conduction. At steady-state the total inputs must equal the total out-

puts.

Consider Figure B-4, showing a cylindrical ring element of axial

length, dx. Axial symmetry in the temperature and radiation flux dis-

tributions is assumed. A heat balance has been carried out for the

element, resulting in the equation

d2T

= -- + Qext (B-3)
R - Rz (_Ddx) (kmt) dx 2

R is the sum total of all the radiation leaving the surface of the

element, or the outward radiosity. RZ is the inward radiosity. The

factors _Ddx have been grouped together, as their product is the surface

area of the element; k t is a parameter we wish to vary..Qex_ is them
heat flowing into the element from sources external to the plpe.

Suppose now we had subdivided the pipe wall and ends into "n"

elements of finite size. For each of these elements, Equation B-3

could be written

B-6
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Qext

Heat Balance (Steady-State):

Qext + QCin + Rz = QCout + R

dt

QCin = -kin (W'IX) dx

dt d E_ (Tr Dr) dT_QCou t = -k m (7/'Dr) _ + _ k m _ dx

.d2T

.. R- R = (,r D dx) (kmt) (_-_-'2) + QextZ

FIGURE B-4

I I

HEAT BALANCE FOR A CYLINDRICAL ELEMENT OF PIPE

B-7
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d2T

R. - =k tA _ + Qil RZ i m i dx 2
(B-4)

where the subscript i indicates that the ith element is being con-

sidered. More concisely,

Ri - Rzi = Ci + Qi (B-5)

where Qi is the external heat input to element i. C i represents the
net heat input into the ith element through conduction. It can be

applied to plane annular elements at the pipe ends also, by using radial

instead of axial temperature derivatives, if applicable. Since the

elements are finite in size, the usual finite-difference approximations

can be used to express derivatives.

The inward radiosity RZi is the result of all the elements radiating

toward the ith element. The contribution of the jth element to RZi is

the outward radiosity of the jth (Rj) times the fraction (_ji) of
Rj arriving at element i:

RZi = _j o(j i Rj (B-6)

Note that a cylindrical ring can radiate to itself, so that _ii is not
zero in general.

The outward radiosity R i is composed of two parts: the emitted

radiation, and that part of the inward radiosity that is reflected.

R i = A. ¢iQ-T. 4i i + (i - _i) RZi (B-7)

A corrective factor can be applied to the emission term to account for
variations in T_ over the element.

Finally, the nature of the problem imposes boundary conditions of

the type

Qi =

or

T. =
i

or

Qi "

a given quantity

a specific temperature

f (Ti, ---)

(B-S)

B-8
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For the problem we are treating at present, all Qi are zero for wall
elements (insulated walls), but the temperatures are unknown quantities;

all T. are specified for end elements, but the external heat inputs
1

are unknown.

Equations B-5 to B-8 are 4n equations in the 4n unknowns: Ri,

Rzi , Ci and Qi" With the use of matrix algebra they can be manipulated
into the most useful form for a given problem.

In particular, equations B-5, -6, -7 can be combined to give a

set of n equations:

- k - (n-m) + q (B-9)

where k, c and q are vectors:

Ai 4

• = -- e @ikl _R 2 i

qi = Qi/(_R2_- TI4)

for pipe wall elements

for pipe end elements, in
case

this I

2k t

,,_ = m
3

LR _" T I

= X/L

B-9
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n = total number of elements

m = number of end elements (both ends)

The solution of Equation B-9 with terms as defined depends only on the

parameters L/D, ewall, eends' andJ'(. It also depends on n and m,

but for large values of these, the solution converges and their effect

disappears. The solution gives the n-m unknown pipe wall element tem-

peratures (in terms of el) and the m unknown external heat flows into

the pipe end elements (in terms of qi). These non-dimensional quanti-

ties can thus be plotted as functions of L/D, ewall, eends andS. In

particular, the sum of q$ at the cold end annular elements represents
the radiative heat flow into the tank. If we add to this the conductive

heat flow from the last cylindrical pipe element (cold end), we obtain

q, the total heat leakage into the tank.

3. RESULTS OF COMPUTATIONS FOR L/D = 3

Figure B-5(a) shows curves of total pipe heat flow (radiation

plus conduction) into a cryogenic tank, as a function of gray wall

emissivity, for three values of _, with the emissivities of both ends

kept constant at a value of 0.i. The basic curve for/_= 0 is a hori-

zontal line, as was explained in the section on fundamentals. The rise

in total heat flow at ewall = 0 for non-zero values of_ (the jump
from one curve to another_ is due solely to conduction,

tAT
Qcond m • 4- L - _R2_'TI

or (B-10)

qcond = Qcond/_R2 _-TI 4 =_

since in that case there is no radiation absorption at the walls. The

increase in this rise as Cwall increases is to be noted: the rise can
no longer be accounted for by,alone. The gradient at the cold end is

larger than before, since the walls have absorbed heat (Cwall not zero);

also, the temperature now generally being higher near the cold end, the

intensity of the radiation there is higher. The curves flatten out for

B-10
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larger values of ewall , indicating the predominance of radiation. The

conductive component acts as if it became saturated; along most of the

pipe length, any additional radiation absorbed by the walls due to in-

creased ewall is re-radiated with only slight changes in temperature

along with the reflected part of the incident energy, producing a pattern

almost independent of ewall. The radiation from this pattern, seen

near the cold end, must be absorbed either at the cold end or at the

walls near the cold end. The latter part is conducted to the cold end.

Figures B-5(b) and B-5(c) show curves for end emissivities of 0.5

and 1.0, respectively. Again, at ¢w_11 = 0, the effect of _is to add
a heat leak of,_i_R O'TI 4 watts to t_a_ forM= 0. The flatness of the

curves over a wide range of ewall indicates the predominance of radia-

tion, now contributed to by the high eends as well as ewall.

Figure B-5(d) shows curves for the same three values of/_, but

now all emissivities, including those of the ends, vary simultaneously.

These curves can be constructed from those of the other three figures:

points a, b, c, in Figure B-5(a) correspond to points a, b, c in Figure

B-5(d); similarly, points d, e, f in B-5(b) and points g, h, i in B-5(c)

correspond, respectively, to d, e, f and g, h, i in B-5(d).

Figure B-6(a) shows the temperature distribution as affected by

ewall, forM= 0.0081 and eends = 0.5. Note the closeness of the

curves over a large portion of the pipe length, indicating a "saturation"
of the radiative effect.

Figure B-6(b) shows the effect of_on the temperature distribu-

tion, for Cwall = eends = 0.i. Figure B-6(c) shows this effect for

ewall = eends = 1.0, and includes a curve for,_= 0. The latter curve

shows the extreme "floating" or adiabatic temperature distribution. The

gradients at the cold end are quite high, but there is no conductive

heat leak since _is zero for this case.

4. A RESULT FOR L/D = 9

A single case for a pipe with a L/D ratio equal to nine was also

treated° For een d_ = 1.0 and zero wall emissivity and/or conductance

(ewall and/or_ = _) the radiative heat leak q into the tank is 0.115.

For a 10-inch diameter pipe, 90 inches long, warm end at 300°K, the

number above represents 2.7 watts.

B-12
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APPENDIX C

VENTING OF MULTIFOIL INSULATION DURING ASCENT

Io ANALYSIS

Consider the multifoil insulation system as a porous solid made

up of individual elements having an identical porous structure arranged

in layers. Assume that the perfect gas equation of state holds and

that the continuum flow is isothermal. Further, assume that the resis-

tance to the flow of gas through this porous structure is controlled by

viscous effects; that is, the flow is characterized by low Reynolds

numbers• For convenience of analysis we fix our attention on the flow

process within a single characteristic element of the structure. Under

these circumstances the pressure drop per layer becomes

32 K_L w
Z_ e : (C-l)

n 3

where

Ap
n

= pressure drop per layer

= viscosity of interstitial gas

L

= density of interstitial gas

= characteristic length of flow path

b

6

= characteristic width of flow path

= characteristic height of flow path

K

W

= constant to account for fine structure geometry

= mass flow through single characteristic element

Figure C-I on page C-5 may serve as a typical model to clarify some

physical aspects of the problem posed. Letting n be the number of

layers per unit depth of insulation, we get

a

P -32 n K-_ L w

"= b S 3 (c- la)

C-I
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P _ I . P _2p (C-4a)

0 32 k n4._(L 2 _ x 2

Equation (C-4a) is a non-linear, partial differential equation. In order

to obtain an approximate solution, we linearizeo In other words, we

assume that the pressure differences within the insulation are small in

respect to some average value, or

p =

with p _.

Letting 32K n4_L 2 = c_, Equation (C-4a) becomes

and reduces to

_ _ _2
_._ (p + p) i (p + p) __ (_ + p) (C-4b)

_e - _ _x 2

0(_ _2p__
- 2 (C-4c)

In line with the assumption for linearization, the term _ P-- can be
P_8

identified with the pressure events taking place outside the insulation

during ascent° The pressure changes taking place outside the launch

vehicle may be used to compute this term in most cases (this is the

conservative approach); in the case of a relatively tight shroud, one

may take advantage of the modification of the pressure history in the

atmosphere surrounding the insula_on. In any event the solution to

Equation (C-4c) is

P = P - _ (t2 - x2) (C-5)
o 2

where _ = _L_ , t is the total thickness of the insulating layers,
P_'O

Po is the outside pressure. The maximum gradient occurs at x = t, and

is equal to

max

C-3
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The maximum pressure difference across any single layer occurs across

the outside layer_ and is equal to

- . -- = (C-6)
dx n n

n max max

The total pressure difference across the layered system is

_P = __---_ t2
max 2 (c-7)

The maximum rate of outflow of gas occurs at the outermost foil and is

equal to

a m

w = bL t OP
RT o_ e (C-8)

The characteristic Reynolds Number (where the major resistance to flow

is due to the lateral motion of the gas between foils as it seeks

escape through gaps between the foils or through perforations in the

foils) is

w i
Rey = -- xb$

m

L t _ P/_ e
RT (C-9)

Example i - Consider the problem of venting a multilayered insulation

system having the general construction features identified in the accompany-

ing figure. This system may be characteristic of a multifoil insulation

laid up in gore strips or in a bandage wrap. Selecting (only order of

magnitude estimates are warranted):

C-4
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Figure C-I

k = io0

L = 0.5 fto

t = io2 ino ffi0.I0 ft.

n = 50/in. = 600 ft -I

-i

_I = 0.3 sec
max

_---_Pffi -70 ibf/ft 2 - sec
d0

typical of rapid
boost-out.

T ffi 540 °R

ffi 4.1 x i0
-7 ibf - sec/ft 2

R ffi 386
ft - ibf

ibm - OR
Ihelium gas

we calculate:

= 4.25 x 105 ibf - sec/ft 4

_ = 1.28 x 105 ibf/ft 4

C-5



and finally,

/%p =

nI
max

/_p =

Imax

21.2 ibf/ft 2

637 ibf/ft 2

Rey = 1.27

max

Example 2 - As another example consider the venting of a perforated

multifoil insulation arranged as shown in Figure C-2. This figure de-

picts a plan view of two foils. The venting gases enter the holes in

one foil (shown in solid line) and drain through the holes in the next

foil (shown in dotted line). Assuming the conditions of the previous

example with the exception that we take L equal to one inch and estimate

that K equals 2, we find:

Figure C-2

/_ Pnl max = 2.36 ibf/ft 2

C-6
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P = 70.8 ifb/ft 2

I max

Rey = 0.211

max

Also, if the hole area is one percent of the foil area (one percent

perforation), the Reynolds Number based on hole diameter is approximately

unity for this case.

II. SUMMARY AND CONCLUSIONS

The foregoing analysis and example calculations are based on order

of magnitude considerations only. Of all the limitations in the mathe-

matical analysis made obvious by the simplifying assumptions inherent to

it, the physical model of the insulation system as a well-ordered

porous structure is prominent. Although such a structure is ideally

suited to reduce the problem of venting, problems of application and

considerations of minimum heat inleakage may well produce systems which

deviate from this ideal. Moreover, during the venting operation, should

some layer under the action of the induced pressure gradients tend to

compress more than others, the result would be an increase in these

gradients and a greater tendency to rupture°

Irrespective of these limitations, the analysis and example cal-

culations provide a guide to the venting problem of super-insulations.

It seems clear that containment and support for decompression forces

during boost-out must be provided. The amount of support necessary is

proportional to the fourth power of the number of layers per unit depth

of insulation and the square of path length of the venting gases°

Although not specifically illustrated by example, the use of a spacer

material between foils increases the resistance to flow (the effect of

a spacer can be included in the value, K) and, hence, the support

requirements.

Of course, it is desirable to minimize the support requirements

for the decompression process. One promising way to accomplish this is

to perforate the radiation shields in a regular pattern of circular

holes. As previously shown (section IV-A-l), these perforations lead to

an increase in heat inleakage but a hole fraction of one percent may be

considered acceptable. Within this limitation, the venting problem is

reduced by using small holes close together° The perforation of the

foils also serve another purpose during space operation; that is,

the tolerance to degradation of the insulation due to interstitial

gas buildup from outgassing or leakage is increased°

C-7
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APPENDIX D

TEMPERATURE PERTURBATIONS IN MULTILAYER

INS ULAT ION

In order to analyze perturbations and their extent in MLI, we use

as a model the bi-dimensional situation illustrated in Figure D-Io An

infinitely long, straight penetration (strip) of width w and thermal

conductivity k|is in thermal contact with the edges of the foils in

multilayer insulation of thickness B and thermal conductivities k_and

_lin the y- and x- directions, respectively, both conductivities being

assumed uniform. The upper foil is irradiated by a flux of uniform

intensity Io

At very large distances x from the penetration, where the effect of

the penetration is not felt, the temperature in the insulation is a

function of y only, and since heat therefore flows in that direction

only, the temperature gradient is independent of x or y. From the

boundary condition (given in Figure D-l) and the above discussion we

have, for large x:

_)T (T - Tliq) T) (D-l)kl 0Y - kj. B = _ (Ta

or

T a - Tli q

T - Tli q - 1 +_B

(D-2)

where T_ is the outer foil temperature at large Xo Because of the uni-

form gradient we can write the temperature distribution

T a - Tli q

T (y) - Tli q - i + k_ ° B

_B

(D-3)

Where x is not large, x-gradients in temperature cannot be neglected,

and the differential equation in the two variables must be used. At

steady-state, this is

2T _ 2T

2 + k_ - 0
k|i _ x _ y2

(D-4)

D-I
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k

_kll

X

T = Tli q

3
B = 4V¢oT a

4 ao I
T a -

FIGURE D- 1 MODEL FOR ANALYZING THE TEMPERATURE FIELD

NEAR A WEAK THERMAL SHORT (k 1 ASSUMED
CONSTANT)
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The solution of (D-4), finite and satisfying (D-3) at large x, is

T(x y) = Tli q +

_0

Ta -Tli_- _ + <-_ C e
kj_ B _ n

i + -- n=l
_B

(D-5)

where_ are constants, functions of n only, to be evaluated with the

remaining boundary conditions. The condition that T = Tli at y = 0
is already satisfied° The remaining conditions are that a_ y = B,

given in Figure D-l, and that at x = 0o From the condition at y = B,
one finds

_an _n B + (_B_ _<n B = 0
(D-6)

If usual values are substituted for k_, _ and B, the parameter

(k_/_B) is found to be quite small (less than 0.001); it is in fact

/4 where _is the reciprocal view factor discussed in chapter IV-A.

For such values, _n B is very nearly equal to n_

_n = n_/B (n = I, 2, ---) (D'7)

and now equation (D-5) can be written

n_x

Ta- Tliq. 3, + _ Cn e B I k,, sin n__ (D-8)T(x_y) = Tli q + k; B B
I+--

_B n=l

The boundary condition at x = 0 can now be applied to evaluate the

C , and thus obtain the temperature distribution throughout the insula-
. . . .

t_on. Thms condltlon is

kg _T + _2T - 0

klw _x _y2

(D-9)

When substituted into (D-6) this gives, after much manipulation,

the solution

D-3
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T (x,y) = Tli q +

T a- Tli _
+

i + q

- Tli RTa
e

I + q B

n=l

e - -B-4_ Sin (_n Y/B)

cOS_n (i + q + q2n2_2) (n_ + H)

n J(i + q + q2n2_2)(n_ +_)

(D-IO)

where q -- k_/_B

_n = _n B

(D-I1)

(D-12)

(D-13)

Equation (D-10) permits evaluating the temperature distribution as a

function of q and H • Incidentally, H is the ratio Rp/R H used in the

resistance concept of Chapter IV-C-I.

If we consider the right-hand side of (D-10) to consist of three

terms, then the first two are the distribution at large x and the

third is the perturbation° Because of the negative exponential in

x, the perturbation will have a maximum value at x = 0 and will decay

with increasing x. When H is small, the largest term of the summation

in the numerator of the perturbation will be the first term. When H

is large, the largest term will not be the first; the terms will increase

slowly as n increases, reach a maximum then decrease. Consider the

value of x such that

_x_l kj.ka,
(D-14)

Then the exponential factor in the first term of the numerator will
be e -_ = 0.043. In the second term it will be e-2_ = 0.0018, and so

on. Thus, at such a value of x, all the terms following the first

will be decreased by factors each e-_ larger than the preceding one,

so that in spite of the fact that the first term may not be the largest,

it will predominate at the value of x given by (D-14). Moreover, at that

value of x, the first term will have about 4 percent of the value it

D-4
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had at x = Oo Therefore, the summation will have much less than 4

percent of its value at x = O. We may, therefore, say that the pertur-

bation will have decayed to very small values when x satisfies (D-14).

We call this value XDecay:

=- BI Ikfl (D-15)
XDecay U kL

D-5
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APPENDIX E

HEAT FLOW THROUGH A BLANKET OF PURE RADIATION FOILS

We consider a cryogenic tank completely enclosed in a continuous

blanket of multilayer insulation consisting of foils that exchange

heat with each other by radiation only. However, heat may flow parallel
to the planes of the foils.

The total radiosity RlOf the inner surface of the first foil equals

the sum of its emitted and reflected powers. For a gray body, with
emissivity e, we have

i

R I = _'c TI4dA+ (i - e) R 2 (E-l)

where the integral is performed over the entire area of the foil--in

this case of the tank also. R2 is the radiosity of the outer surface

of the second foil, i.e., the surface facing that of radiosity R I.
Equation (E-l) assumes that the foils are close enough together so that

their mutual view factors are unity.

Likewise, the total radiosity R2 of the second surface just dis-

cussed may be expressed as

R 2 = _-eT2 4 dA + (I - e) R I (E-2)

Since heat is exchanged between foils only by radiation, the net

heat flowing from the first foil to the second must be the difference

between R I and R 2

QI2 = RI - R2 (E-3)

The difference R I - R 2 can be found from equations (E-I) and (E-2).
Solving, we obtaln

Q12 l (E-4)

E-I
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We may write similar expressions for the heat flowing between

any two adjacent foils

Qi'i+l- 2_ l i
6

(E-5)

At steady-state, all such Qi,i+l must be equal to each other° We may,
therefore, write a set of n equations

T24 dA

= _T24 dA - _ T34dAl

!

I

l= _Tn_ 14dA _Tn4dA

(E-6)

= _Tn 4dA - _Tliq4dA

If all the equations are added, we obtain

or

Q _2--7) n TI4dA - _ Tliq

(E-7)

Equation (E-7) relates the unknown total heat flowing into the tank

with the unknown temperature integral of the outer foil. Another

relation exists between these two unknowns, in terms of the known incident

flux and radiative properties of that outer foil:

E-2
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Q

o o

= "_(o _I dA- _'£o _TI 4 dA (E-8)

We can combine (E-7) and (E-8) to solve for Q in terms of known quan-
titieso The result is

4

O_o _ IdA - _5-C (_Tli Q dA
Q = o (E-9)

1 +(2 - 1) n£ °

This result is valid for a continuous blanket of pure radiation

foils° It holds independently of any thermal conduction parallel to

the foils, since (i) the derivation leading to equation (E-5) is based

on arbitrary temperature distributions in the foils; (ii) the equalities

(E-6) and their consequence (E-7), are true at steady-state regardless

of parallel conduction; and (iii) the outer foil surface radiation heat

balance (E-8) is obviously independent of parallel conduction°

The denominator of (E-9) can be simplified in practical cases.

First, since 2n/c _---50 n, we may neglect the first term, unity. We

may also neglect unity in brackets compared with 2/c ___50. Therefore,

the denominator can be re-written within about 2 percent as 2neo/e _ i/_,

where_is the shielding factor frequently used in this report. Equation
(E-9) may then be written with good approximation as

(E-lO)

or, in terms of the adiabatic wall temperature distribution:

i 43Q = _ _c ° _ (Ta4 - Tli q ) dA (E-II)

In many cases the integral involving the liquid temperature raised to

the fourth power can be neglected. However, the use of shadow-shields

and radiators can lower the values of Ta 4 to the same order°

E-3
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APPENDIX F

EQUATIONS FOR THE GENERAL CYLINDRICAL THERMAL SHORT

IN PURE RADIATION FOILS

The steady-state heat conduction equation in cylindrical coordinates,

in a medium of continuous (though not uniform or isotropic) thermal

conductivities as represented in Figure F-l,is

_T i j_ (r ,_T
_y (k_ _ ) + r Dr kJl -_ ) = 0 (F-l)

The basic assumption not exactly represented by fact is that of con-

tinuity. However, when the number of foils is large, such that the

spacing between two adjacent foils can be considered as a differential

of distance, the equation retains its validity, so long as the solution

is not interpreted on a scale smaller than such spacings. With that

understanding, both k_and k,can be expressed in terms of foil properties

and spacing:

2_'_ B T3
k -- (F-2)

n

n

-= tf + k t ) _ (F-3)k j (kf s s

In these equations, the spacing, B/n is assumed uniform. In (F-3), the

subscripts f and s refer to foils and spacers, respectively. For con-

venience the products k t (thermal conductivity times thickness) will

be grouped together as a single term

k t n (F-4)
ks_ - B

with the understanding that k t represents all contributions: that of

spacers as well as foils. Some foils consist of metal vacuum-deposited

on a plastic° The product includes the contribution of the plastic

as well. Even in such cases the contribution of the metal predominates.

The expressions (F-2) and (F-4) can be substituted into (F-l), which,

after some simplification, becomes

F-I
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B 2 ) 2T4 i

_'c _+

2n2kt _ y2 r _)r

(r bT =o

The boundary conditions are as follows:

(F-5)

y = 0 : T = T_

= T4 + k_ _Ty B : _o I = _- eo _)y

or

(F-6)

3
2_'e BT ,DT

n _y
-_,_g ° (Ta 4 - T4)

or

__T 4

_y

where _- e/2neo (as usual)

i

B (Ta 4 - T4)
(F-7)

r-_:

r=r :
o

T = f (y) (given)

___T k _T = 0w (k .)y ) + . _r

(F-8)

or

wkl_ BI]_ _ _2T + _T

i B J _nkt_ _y2 c_r
= 0 (F-9)

Equations (F-5) to (F-9) can be put into dimensionless form° Let

4 '_o I
r = (F-10)
a eo_-

O ----T/T a (dependent variable)

u --- y/B (independent variable)

(F-II)

(F-12)

F-3
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v =- r

3 _
e T

a

2n2kt
(independent variable) (F-13)

_-e Ta
v --- r (parameter)
o o 2 n 2k t

(F-14)

w k/B
J

"_ -= " ' 3' (parameter)

i _re T a kt

' 2
D

(F-15)

81i q - Tliq/T a (parameter) (F-16)

In terms of the quantities just defined, the differential equation

(F-5) can be expressed as

_204 + _2e i _8+ -
2 2 v _v_u _)v

= 0 (F-17)

and the boundary conditions become:

u = 0 : e = @liq

u = i : _84 i

_u -

(F-18)

(i 84 ) (F- 19)

0 (F-20)v = v : ._J. _2e _e
2 +

o 3 u _v

O 4v -_ _ : = f (u) (F-21)

For the special case where the outer foil surface is irradiated uniformly

out to distances very far from the region of influence of the thermal

short, 4

i - 81i q4

f (u) = 81iq + I + _ u (F-22)

F-4
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For the usual cryogens and the usual values of Ta, the parameter @liq
is not an influential one; it might be neglected.

The solution of (F-17) with a given set of parameters (Vo, _ ,_, @liq)
gives the function e (u, v) for that set. From e (u, v) the added

heat leak due to the short can be calculated. (We assume that the top

surface of the annular short is shielded from incident radiation, and

that the hollow region is filled with good insulation or otherwise baffled

to prevent internal radiation.) Before discussing this calculation,

the significance of the variable v must be explained. In undisturbed

insulation the heat that would flow through unit area of the insulation
is

4 Tli 4)
Q = _ (Ta - (F-23)

A 12 - i) n (i + _)

4
%-c Ta

2n (F-24)

This heat flow can also be expressed in terms of an overall transverse

thermal conductivity k_m

--- /B
A k_m (Ta - Tliq)

-_. k T /B (F-25)
Am a

Comparing (F-24) and (F-25) allows a definition of k£m for pure radiation
foils:

_¢ Ta3B

k_m -= 2n (F-26)

In terms of k£m , and of kjj as defined in (F-3), the variable v can be
expressed as

tv

r _
v -= B kll

F-5
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In terms of XDecay as defined in Appendix D, v can also be expressed
as

r
v

XDecay

(F-28)

Similarly, for the parameter v
o

v
o

r
o

XDecay

(F -29)

Now, the radius of the region of influence will not be more than one

or two decay distances from the outer surface of the thermal short:

e 4v--)v + 2 : = f(u) (F-30)
o

Therefore, to evaluate the added heat flow one need not consider values

of v beyond v + 2.
o

The net radiative flow into the insulation is given by

Q (Ta 4 4)= _- e - T (F-31)A o s

Atv=v +2,
o

At smaller v,

4
T

4 a
T - (F-32)
s I+_

Ts4 = Ta4 84 (u = I, v)

4 814- Ta (v) (F-33)

F-6
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where @l(V) denotes the value of e at u = I, function of v.
(F-32) and (F-33) we can form

From

eoTa 4 ]( @i 4 i
A_ added = _ i - (v)) - (i I +r( )

Therefore,

4
_-eT

o a i el4(V) I
i +ll

J

(F-34)

o a I +X (v) dA
r
o

4 i el 4 (v) I 2_rdr= _ eoT a + _ ;

r
o

v +2
o

nktT / i el4(V) i

= 2_ a i v dv

v
o

(F-35)

The added heat can be made to take other forms, in which the integral

will take different meanings°

F-7
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